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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from
over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A,,
M.Com., M.Sc., M.B.A,, and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact
classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.
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SYLLABUS
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103PH24-MATHEMATICAL PHYSICS
Learning Objectives:

++ Student should be able to understand basic theory of Complex Analysis, Special
functions, Fourier series and integral transforms.

+«+ To learn mathematical tools required to solve physical problem.

+«+ To understand mathematical concepts related to physics

++ To understand the relevance of higher mathematics and concepts of physics.
Unit-1
Beta & Gamma Functions - Definition, Relation between them- Properties.

Legendre's Differential Equation: The Power Series Solution-Legendre Functions of the
first and second kind - Generating Function - Rodrigue's formula - Orthogonal Properties -
Recurrence Relations - Physical applications.

Associated Legendre equation, Orthogonal properties of Associated Legendre's function.

Bessel's Differential Equation: Power series Solution -Bessel Functions of First and Second
kind-Generating Function -Orthogonal Properties -Recurrence Relations- Physical
applications.

Learning Outcomes:
e To learn about basic theory of polynomials
e To acquire knowledge about Legendre's, Associated Legendre's and Bessel equations.

e To learn the physical applications and properties in order to solve quantitative
problems in the study of physics.

Unit-11

Hermite Differential Equation: Power Series Solution - Hermite Polynomials — Generating
Function - Orthogonality - Recurrence relations - Rodrigues formula- Physical applications.

Laguerre Differential equations: The Power series Solution-Generating Function-
Rodrigue’s Formula- Recurrence Relations, Orthogonal Properties- Physical applications.

Learning Outcomes:
e To learn about basic theory of polynomials
e To acquire knowledge about Hermite Differential and Laguerre Differential Equation.

e To learn the physical applications and properties in order to solve quantitative
problems in the study of physics.



Unit-111

Integral Transforms: Laplace Transforms - Definition - Properties - Derivative of Laplace
Transform - Laplace Transform of a Derivative - Laplace Transform of Periodic Function -
Evaluation of Laplace Transforms - Inverse Laplace transforms — Properties - Evaluation of
Inverse Laplace transforms - Elementary Function Method - Partial Fraction Method -
Solution of Ordinary Differential Equation by using Laplace Transformation Method -
Fourier Series - Evaluation of Fourier Coefficients - Problems - Fourier Transforms - Infinite
Fourier Transforms - Finite Fourier Transforms — Properties - Problems.

Learning Outcomes:

e This will enable students to apply integral transform to solve mathematical problems
and used to understand the analysis of Fourier series.

e The students will be able to use Fourier transforms as an aid for analyzing different
types of waves.

Unit-1vV

Complex Variables: Function of Complex Number — Definition - Properties, Analytic
Function - Cauchy - Riemann Conditions - Polar Form - Problems, Cauchy's Integral
Theorem, Cauchy's Integral Formula - Problems, Taylor's Series-Laurent's Expansion -
Problems, Calculus of Residues, Cauchy's Residue Theorem, Evaluation of Residues,
Evaluation of Contour Integrals.

Learning Outcomes:
e To learn about complex algebra and Cauchy's integral theorems.
e To learn evaluation of contour integrals.

Unit-V

Tensor Analysis: Introduction - Contravariant, Covariant and Mixed Tensors - Rank of a
Tensor - Symmetric and Anti-symmetric Tensors - Invariant Tensors, Addition and
Multiplication of Tensors, Outer and Inner Products - Contraction of Tensors and Quotient
Law.

Learning Outcomes:

e The students should be able to formulate and express a physical law in terms of
tensors.

e To know how to simplify tensors by using coordinate transforms.

e To understand what extent tensors used to explain theory of relativity.
Course Outcomes:
After successfully completing the course, student will be able to:

e Understand the basic elements of complex analysis, including the important integral
theorems.



e Understand the applications special functions that are used in quantum mechanics.

e Learned how to expand a function in a Fourier series and able to solve mathematical
problems relevant to the physical sciences.

Text and Reference Books:
1) Mathematical Methods for Physics. By G.Arfken.
2) Laplace and Fourier Transforms - by Goyal and Gupta. Pragati Prakashan, Meerut.
3) Matrices and Tensors for Physicists by A.W. Joshi.
4) Mathematical Physics by B.D. Gupta, Vikas Publishing House, New Delhi.
5) Complex Variables, Schaum Series.
6) Vector and Tensor Analysis, Schaum Series.

7) Fundamentals of Mathematical Physics, 6 Edition by A.B.Gupta, Books and Allied,
Kolkata.

8) Mathematical Physics - B.S. Rajput.
9) Mathematical Physics - Satya Prakash.
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M.Sc. DEGREE EXAMINATION, MODEL QUESTION PAPER

M.Sc. PHYSICS-FIRST SEMESTER
MATHEMATICAL PHYSICS

Time: Three hours Maximum: 70 marks

Answer ALL Questions
All Questions Carry Equal Marks
a) Show that 2"T (n + %) =135..(2n - 1)Vn?
b) Explain the power series solutions of Legendre’s differential equations
OR

c) Briefly explain about the orthogonal properties of Associated Legendre’s functions
d) Explain the Recurrence Relations of Bessel’s differential equations

a) Explain the Hermite polynomials
b) Explain about the Rodrigue’s formula of Laguerre differential equations

OR

c) Explain about the Laplace transforms of definition and properties
d) Explain about the properties and evaluation of Inverse Laplace transforms

a) Find the finite Fourier sine and cosine transforms of f(x) =1 in (0, ).

b) If z = re"®, show that the Cauchy — Riemann equations take the form

1 1
U =~-Vgand v, = —= Ug
r r

OR
2
c) Evaluate | —— dz, where “c” is the circle such that |z| = 2.
¢ (z-5)

, f _ 1
d) Expand Laurent’s series f(z) = heD forl<|zl <2

o 1

a) Evaluate real integral J___ -y

OR
b) Show that the law of transformation for a contravariant vector is transitive.
a) Define the rank of a tensor and provide examples of tensors with ranks 0, 1, and 2.
OR
b) Given a contravariant tensor A’ and a covariant tensor By in a 3-dimensional
- 1 0 2 k
coordinate system, where:AY = (-1 3 1 |and B, =| k? |. Calculate the outer

o 0O 2 -2 —k
product C™*=AlB,.
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LESSON-1
BETAAND GAMMA FUNCTIONS

1.0 AIMAND OBJECTIVE:

The primary aim of this lesson is to establish a comprehensive understanding of Beta and
Gamma Functions, including their definitions, relationships, and essential properties. After
completing this lesson, students should be able to define and apply the integral
representations of both Beta and Gamma functions, derive and utilize the relationship
between them, employ various properties to simplify and evaluate integrals and enhance their
analytical and problem-solving skills through the application of these functions in diverse

mathematical contexts.
STRUCTURE:

1.1 Introduction

1.2 Definitions

1.3  Relation

1.4 Properties

1.5  Problems

1.6  Summary

1.7  Technical Terms

1.8  Self-Assessment Questions

1.9  Suggested Books

11 INTRODUCTION TO BETAAND GAMMA FUNCTIONS:

Beta and Gamma functions are powerful tools within mathematical analysis, acting as
extensions of the factorial and offering elegant solutions to complex integrals. These special
functions, defined through integral representations, reveal deep connections between
seemingly disparate areas of mathematics, from probability and statistics to physics and
number theory. Understanding their definitions, properties, and the inherent relationship
between them equips students with a versatile toolkit for tackling a wide range of analytical

problems.
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1.2 BETAAND GAMMA FUNCTIONS:
DEFINITIONS:

Under the study of Definite Integrals, we come across two very important integrals known as

Eulerian Integrals which are of the type

j xm-1(1 —x)"1 dx and j e~ 1xn~1 dx
0 0

where the quantities m and n are supposed to be positive. These integrals are fundamental and
hold an important place that they are widely applied in different branches of mathematical

analysis like mechanics, physics etc.

The first Eulerian integral is generally known as Beta Function and defined as

B(m,n) = f0°° xM=1(1 — x)"~1 dx where m and n are positive.
The second Eulerian integral is known as Gamma Function and is defined as

r(n) = f,” e *x"~1 dx, where n is positive.

Note: Weierstrass (1815-1897) defined the Gamma function as

1 = n

= neym 1_[ 1+ — -n/m

My ° ( e |
where 7y is known as Euler’s or Mascheroni’s constant and defined as
= Li 1+ 1 + 1 + -+ <1 | )

Y= 2 3 m 109%™
= Lim (uy, — loge m)
m—-0oo
withuy, = Z;’nﬂ% andy = 0.5772157 nearly.

1.3 RELATION BETWEEN BETAAND GAMMA FUNCTIONS:
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From transformation of Gamma function, we have

'm j""
— -Axym-—1
— = e~ XX dx
Am 0
i.e. 'm = f0°° Ame—Axym-1 gy

Multiplying both sides by e=A"~* and integrating w.r.t. A within the limits 0 to oo,

we get
'm jme_}‘. AldA = joo Uooe_}‘(“'x)lm*'n_l dA|x™m=1 dx
0 0 0
or rmrn=[" (ff:);nfn .x™=1 dx by equation from transformation of Gamma
function

I'mTI'n=T(m+n)B(m,n)

'mTIn
r'(m+n)

B(m,n) =

14 FUNDAMENTAL PROPERTIES OF GAMMA FUNCTIONS:
I'(n+1) =nr(n)

In order to prove this relation let us consider the integral
j e Xx"dx =T(n+1)
0

Integrating it by parts taking e™ as second function, we get

[ee] [ee]
j e~ XxM dx = [—e *x"]§ — j e *x"~1 dx
0

0

(o)
Iy
0
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(since Z—X vanishes for both the limits as Lim,_, Z_x =0and

R Xn R Xn
Limy_ o == Limy,(o ——=—=0)

X
I TR

Fr[(n+1)=nl'n) ...coovvevienne. (1)

From (1) it is evident that if the value of I'(n) is known for n between two successive
positive integers, then the value I'(n) for any positive value of n can be determined by the

successive application of (1).
Now (1) can be written as

r="22 )

If —1 < n < 0 then (2) gives I'(n), since n+1 is positive. As such the value of I'(n) may
be determined if—-2 <n < —1 since then I'(n+ 1) on the R.H.S. of (2) is known.

Similarly,I'(n) may be determined when —3 < n < —2 and so on so forth.
Hence T'(n) = f0°° e~ Xxn~1 dx = @ defines T'(n) completely for all values of n
exceptn =0,—-1,-2,-3, ...
Now replacing n by n — 1 in (1), we get
rnN)=m-r(n-1)

Similarly,I'(n — 1) = (n — 2)I'(n — 2) etc.
Hence (1) yields

r(n+1)=n(n-1)(n-2)..321T(1)
But by definition (1) = f,” e dx = [-e™*]§ =

~Th+1)=nnh-1)(n-2)..321=|n. cierereriiiinenen. (3)



Mathematical Physics 15 Beta And Gamma Functions

1.5

Provided n is a positive integer.
Putting n = 0 in (3), we get
r=10=1+10=1
T =1 R ()]

Also, if we put n = 0 in (2), then we find

r)="2=o i (5)

By repeated application of (2), it may be shown that the gamma function becomes

infinite when n is zero or any negative integer, i.e.,
[(—n) = P (<)
when n = 0 or a positive integer.

But the function has finite value for negative values of n which are not integer,

PROBLEMS:
1xma-nt _  [min
1) Show that | arOmT dx = A (L a)M (i)

m-1/4_,yn—1
Let] = [ XG0 gy

0 (a+x)m+n

x(1+a) _ _ _ay
Put g V'S0 thatx = ey
at+x—x _ . _ (a+x)?
And (1 + a) a2 dx =dyie., dx = prevn

Assuchl —x = 1 — & — ltay-ay _ (1+a)(1-y)

l+a-y  1+a-y 1+a-y
Alsoa+x=a+ vy ata’-ay+ay — a(1+a)
1+a-y 1+a-y 1+a-y’
*(1+a)? 1+
And therefore, dx = — (1+2) _ _a(i+a) dy.

(1+a-y)2a(1+a) - (1+a-y)?
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Thus
[ = 1 am—lym—l(l + a)n—l(l _ y)n—l(l +q— y)m+na(1 + a)
s A+a— )" i(1+a—y)ignn(l+a)mn(l+a—y)2 7
1 1
=),
_ _ 1 I'mTI'n
or I'= a(1+a)™ B( ) = a™(1+a)™ I'(m+n)’

/2
2) Prove that fon J (tan6)do = %
L.H.S. = [2/(tand)d6
= jz(sin 6)/2 x (cos 8)~V2de
0

zzrzri_ r=r(1-3) 1 g

Ay 2 lzlsin%

Sl

1.6 SUMMARY:

This lesson delves into the Beta and Gamma functions, defining them through integral
representations and exploring their fundamental properties. The Gamma function extends the
factorial to complex numbers, while the Beta function facilitates the evaluation of specific
integrals involving powers of variables. Crucially, the lesson establishes the relationship
between these functions, allowing for the transformation and simplification of complex
integrals. By mastering the definitions, properties, and interconnections of the Beta and
Gamma functions, students gain valuable techniques for solving a wide range of analytical

problems across various scientific and mathematical disciplines.
1.7 TECHNICAL TERMS:

Beta and Gamma Functions.
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1.8  SELF-ASSESSMENT QUESTIONS:

1) Show that 2"T (n + %) =135..(2n— V.

1 a _ R
2) Show that || Taom )’

*I%

1.9 SUGGESTED BOOKS:

1) M.R. Spiegel ‘Complex variables’, McGraw — Hill Book co., 1964.
2) E. Kreyszig ‘Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd., 1971.

3) B.D. Gupta ‘Mathematical Physics’, Vikas publishing House, Sahibabad, 1980.

Prof. R.\VV.S.S.N. Ravi Kumar



LESSON-2
LEGENDRE’S DIFFERENTIAL EQUATION

20 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Legendre’s differential
equation. The chapter began with understanding of The Power series Solutions, Legendre
Functions of the first and second kind, Generating Functions, Rodrigue’s formula,
Orthogonal Properties, Recurrence Relations, Physical Application. After completing this
chapter, the student will understand the complete idea about Legendre’s Differential
Equation.

STRUCTURE:

2.1  Introduction

2.2 The Power Series Solution

2.3 Legendre Functions of the First and Second Kind

2.4  Generating Function

2.5 Rodrigue’s Formula

2.6 Orthogonal Properties

2.7  Recurrence Relations

2.8 Physical Applications

2.9  Summary

2.10 Key Terms

2.11  Self Assessments

2.12  Suggested Readings

2.1 INTRODUCTION:

Legendre's differential equation is a type of second-order ordinary differential equation
(ODE) that arises in various areas of mathematical physics, particularly in problems with
spherical symmetry. It is named after the French mathematician Adrien-Marie Legendre.

The standard form of Legendre's differential equation is:

1) L2 -2x 2 4 n(ne1)y=0
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Here:
e y=y(x) is the unknown function,
e nisanon-negative integer (often called the degree of the equation),

e X isthe independent variable, typically with —1<x<1.

2.2 LEGENDRE POLYNOMIAL:

STATEMENT: The differential equation
2\ d%y dy _
(1-X)@ - ZXE +n (n+1)y— 0,
Where X is constant

This equation can be written as

o {1 3 +n (n+1) y=0,
Where x is constant.
Solution of Legendre Equation (Power Series Solution):
(Power Series Method)

Let us assume the solution of eqn(1)in a series of descending powers of x as

y = ;?:0 a, xk—r """" @
derivationon both sides of (2)

dy _ 0 k—r—1. d?y — e k—-r-2
- = Zr=or(k—1)x  —2 T Lr=o @ (k—1)(k—7r—1)x

Substitute the above values of z—z and % in (1)

We get

(1-x%) Y2 oar(k—7)(k—r—1)x*T2 - 2x3"_ o a,(k —r) xkT1
+n(n+l) Yo a,xt" =0

Yo @y [(kr)(kr-1) x*¥72 + {n (n+1) = (k-1) (k-r+D)3x*" ] =03
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Eqgn (3) being an identity, we can equate to zero the coefficients of various power of factors
(x)

Let us first equate to zero the coefficient of highest power of x i.e, X (by putting r=0)
ao {n(n+1)- k(k+1)} =0
2070 [this is the 1% term of the series with which we can start the expansion]
a#0 ~n(n+l)-k(k+1) =0
~ The indicial equation is n(n+1)-k(k+1) =0
n* +n—k* +k =0
(n*- k3 + (n+k) = 0
(n-k) + (ntk+1) =0

~k=n |k :-n-l-------_-@

Again equating to zero, the coefficient of next highest power of x i.e

X[ by putting r=1]
an{ N(n+1) — (k-1)k} = 0
+ a; = 0 and n(n+1)-k(k-1)# 0 [~from (4)]

Now equating to zero the coefficients of general term i.e., X"

ar2 (k-r+2) (k-r+1) + a, { n(n+1)- (k-r)(k-r+1)} =0

_ —(k-r+2)(k-r+1)
& = n(n+1)—(k-r)(k—-r+1) S ©

CASE-1: When k =n the recurrence relation between the coefficients is given by

= —-(n-r+2)(n-r+1) _ =-(-r+2)(n-r+1)
(n?+n-n? —r2+2nr—n+7")mr'2 r(2n-r+1) ar-2

ar

By puttingr=2,3,45........

Forr=2 a, = —‘2(2‘2)7(::)1) o
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Forr=3 a; = —&-0®2) 5 = 0 [+a =0]

3(2n-2)
Similarly as =0,a; =0, .......
~ a ‘s having all 0dd suffixes are zero.

—(n-2)(n-3)

Forr=4 a, = m do
a _ —(n-2)(n-3) X -(mn-1), _ nnm-1)(n-2)(n-3) _
4 T 4(2n-3) 2(2n-1) 07 2x4x(2n-1)(2n-3)°°

Similarly

_ —n(n-1)(n-2)(n-3)(n—4)
"~ 2X4x6X(2n-1)(2n—3)(2n->5)

By assuming solution from eq (2)

y = ;?:0 ar xk—r
Put k=n
y = Z;?:O ar x™T

y=ag X +a X"+ ap X" +ag X a X"t +
Substituting the values of a; , a3, as....... , We get

_ _n(n-1) n(n-1)(n-2)(n-3)  n-4
= a [X T 2(2n- 1)X * 2X4-X(2n—1)(2n—3)X BETERRR ]

ifag = “Sn—'(zn_l) In the above equation.

We get the solution of Legendre’s differential equation and is represented by Py(x)

(271 Dp n_n@m-1) n2 n(n-1)(n-2)(n-3)  n-4
Pn(x) = L 2(2n-1) * 2X4-X(2n—1)(2n—3)X BETERRR ]

CASE-II: When k = -n-1 the recurrence relation between the coefficients i.e., eq (5)

becomes
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a = —(—n-r+1)(-n-r) A = —(n+r—-1)(n+r) a
" n(m+1)-(-n—1-r)(-n-7) 2 T M2in—n?—r?—znr-n-r 2

- (n+r-1)(n+r)

ar-
r(2n+r+1) r-2

By puttingr =2,3,4,.....

Forr=2  a,={e?
2(2n+3)

_ _ (n+2)(n+3) -
Forr=3 az = anid) a1 [herea; =0] 4

a3 =0 [+va =0]

Similarly as having odd suffixes are zero.

As=a7=a9 = .oerunnn. =0 (each)
_ _ (n+3)(n+4) _ (n+1)(n+2)(n+3)(n+4)
for r= d = an+s) 2 T T 24(2n+3)(2n+5) do
By assuming solution from eq (2)
y = Zr 0 ar -
Putk=-n-1ly = Y ,a,x " 17"
Theny=aox™ + a; x™ +a, x™ +........
Substituting the values ofag , a; , @z, ..... in the above expression, we get
= a [ NG 1 (n+1)(n+2) + (n+1)(n+2)(n+3)(n+4) + ]
y 2(2n+3) 2.4.(2n+3)(2n+5) T

————  then above solution becomes second time solution of Legendre
1.3.5.....(2n+1)

if we getay =

Polynomial and is denoted by Qn(x)

(X) - n! [ .n-1+(n+1)(n+2) N3 L (n+1)(n+2)(n+3)(n+4)
..(2n+1) 2(2n+3) 2.4.(2n+3)(2n+5)

2.3 LEGENDRE FUNCTIONS OF THE FIRST AND SECOND KIND:

The Legendre functions of the first and second kind are solutions to Legendre's differential
equation, which appears in various physics and engineering problems, especially in spherical
coordinate systems.
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Legendre’s Differential Equation:

The equation is:

d*y dy
W_ ZXE + n(n+1)y =0

(1-x?)
Where X is constant
Legendre Functions of the First Kind: p,,(x)

These are the solutions that are regular (finite) at x=+1 for integer values of n. For integer n,
they are known as Legendre polynomials.

For example, the first few Legendre polynomials are:

e polx)=1

e pi(x)=x

e p(x)=-(Bx%-1)
o p3(x)= i(Sx3 — 3x)

These polynomials are widely used in physics for solving problems with spherical symmetry,
like gravitational and electric potentials.

Legendre Functions of the Second Kind: Q,,(x)

These are the second linearly independent solutions to Legendre's equation and are typically
singular (infinite) at x=x1. For integer n, they are denoted asQ, (x) and are less commonly
used because of their singularity.

For example, for n=0and n=1, the functions are:

1+x

e Qo(x) :%ma

¢ u) =52

24  GENERATING FUNCTION OF LEGENDRE POLYNOMIAL:

Statement: (1-2xh+h?)* = ¥=_ 4™ B, (x)
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(1-2xh+h?)™? = [1-h(2x-h)]™?

n(n+1) 2 n(n+1)(n+2) X3
21

(1-x") = 1+nx + .

h2(2 h) + . +%(;1+1)(;1+2) """"" {;1"'(71—3)}1111_2 (2x—h)"2
e =

(1-2xh+h?) 2 =1 + = h(2x h) +2 27

1(—1+1)(—1+2) ........ {;1+(n—2)}hn_1(2x—h)n_1+%(;1+1)(;1+2) ........ {S+m-1)}" (2x—m)"

(n—-1)! (n)!

1.3.5 2 5 -
2x-h)?2 + ..., + Wi’;)') h"2(2x-h)"2+

1.3.5........(2n-3) hn 1(2 h)n -1,135......(2n-1) hn(ZX-h)n

2(n— 1) (n—1)! 2N nl
Now by collecting the coefficient of h" from the above expansion, We have

(a-b)"="C, a"b%-"C; a™tbt +.........

1.3.5......(2n-1) oy 13.5......(2n=-3) (n-1)! 5p-2 n-2,135...(2n=5) (n-2)! n-4 Xn-4_
21 nl 2(n-1) (n-1)! (n—2)! ! 5(n—2) (n—2)! 2i(n-ay < 7~ T
1.3.5......(2n-1) X" - 1.35.......2n-3) (n-1)! 2n-1)n(n—-1) n=2
n! 2 (n-2)! (2n-1)n(n-1)
1.3.5.........(2n=5) (2n-3)(2n—-1)n (n—-1)(n-2)(n-3) n-4_
2 (n—4)! (2n-3)(2n-1)n (n-1)(n-2)(n-3)"

135....2n-1) r \n_n(m-1)  n2_ nm-1)n-2)(n-3) K n4_ _
n! [X 2(2n—1)X * 2.4.(2n-3)(2n-1) Xmn ] Pn(X)

~(1-2xh+h?) Y2 =y ™ P (x)

2.5 RODRIGUES FORMULA OF LEGENDRE POLYNOMIAL:

_ 1 adt(x?-1)n
P”(X)_znn! dx™

Proof:
Lety=(x2—-1)"

. _ 2 _ -1
o n(x D™ (2x)
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(D2 = nx? —1)"t (1) (2%)
(x2-1)z—z = 2nxy

D"(AB) ="C, D"(A).B + "C, D™(A) D’(B) + "C, A D"(B)

D 0) 4 VLY gy 0CEY = ong Y o)L
= (1) L wanx 2w ox L2y MO o LY o T 4 on(ne1)
(L) L2 L wn(ne) 22 =0

PutZ= Z%

(1x)——2x—+n(n+1)Z =0

This equation is in the form of Legendre differential equation. Hence the solution of this type

of equation is

Z=CPn(X) .cvv.... ®
"y _
—n = CPu(X)

[F21x=1 = CPo(1)

[ _ =C......0 [ Py1)=1]

dx™

Consider y = (x*-1)"

y = (x+1)"(x-1)"
Again differentiate by using Leibentz theorem upto n times

d

I = nC (X 1)”% nC n(X 1)n 1%4. _______ +nCn(X+1)nn%

xn— 1
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Now

n
dx™

C=2"n! [from @]

From equation ®

Z = CPp(x)
Pu(x) = =

1 4"

Pn(X) = 21 nl ﬁ

_ 1 dtxF-)"
P”(X)_znn! dx™

2.6 ORTHOGONAL PROPERTY OF LEGENDRE POLYNOMIAL.:
) P ()P = = S

Where §,,,,, is called Kronecker delta function

Omn = 0when m=n

Omn =1 when m=n

Case-(1): [ Pp(x)Pp(x)dx =0

Proof: We know that Legendre differential equation

(132~ 2x 2 + n(n+1)y =0

(@6 n(n+1)y =0

Let us assume that Pn(X) & Pm(x) are the two solutions of above equation

Then you may write
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AN (041 Py (6) 0. O

[ m(m1) By (1) =0 oo ®

Equation @ is multiplied with Pn(X) & equation®@ with P,(x) then

Pn(X)- (132 (1) By () Py () =0 ... ®
Po(¥) (1) +m(m+1) By (x) Po(¥)=0 ... ®
Subtract equation ® from equation ® & then integrate w.r.t ‘x” between the limits -1,+1

21 PmE0 11 — x2) e dx - [T Pn(x) £ [(1 - x2) TEydx +
[n(n+1)-m(m+1)] [} P, (x) Py (x) dx =0

(L2 P14 - [ o [(1 = x2) “a2dx ~[[(1-5) 722 Py()]
+[ 1220 (1 — x2) LB +[n(n1)-m(m+1)] ] Py(x) P (x) dx = 0
[ Py () H3-{(13EE P()] 4 (e 1)-m(m+ )], B () B () dx = 0
By applying limits we have

[n(n+1)-m(m+2)] [} P (x)Pn(x) dx = 0,

o [ By(x)P(x) dx = 0, if m=n

Case-2:[" [R,(x)]?dx = —— ifm=n

We know that from the generating function of Legendre Polynomial
(1-2xh+h?)Y2 = 3=_ h" P, (x)

Squaring on both sides we get

(12Kt = B h¥ [By G2 + 2 T ™ P (%) Po(x)
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n=0
m=n

Integrate the above equation w.r.t. *x’ between the limits -1 & +1.

+1 d © w
I (1—2x§+h2) = Tz B [Pa ()] + 2 X5mg BT P (%) Po(x)

=22 flog( (L-2xh+A]H] = N oA [R()]2 +0
[« [7 Pu(x)Pn(x) dx =0, if m=n]
Zlog(1-h)>-log (1+h)* ] = Nz A" [P(0)]?

[ log (1+h) = log(1-h)] = Zri_o h*" [P (x)]?

1 n? h3ont U S w
L S ) s (g = S T = R 7 TR ()P
1 3 22N+ .
> [2h+ =+ ot 1 = 32 o h*" [P, (x)]?
= 2[ 1+ 2 P 1= 0 k" [P ()]?
g e a1 e n=0 n

Comparing co-efficients of h*" on both sides, we have

[UR@Pdx = 2~ if m=n
PROBLEMS:

1) Show that Py(1) =1
(1-2xh+h?) Y2 = 3=_ h" P, (x)
Putx=1

(1-2h+h?) Y2 =320 1" Po(1)

r=o A" Pu(L) = ((1-h)?)™2
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Yr=oh" Pu(1) = (1-h)*
Yo B B (1)=1+h+h+ ... +h"+..
Equating the coefficients of h" on both sides
Pa(1) =1
o Pyl)=1
2) Show that Pn(-X) = (-1)" P(X) & Pn(-1) =(-1)"

From the generating function of Legendre Polynomial

(1-2xh+h?) ™2 = 3o _ 1™ P, (x)--------- ®
Put x = -x
(1+2xh+h?) 2 = $°_ 0 p™ P, (—x)-------- ®

Put h = -h in equation®
=0 h" Pu(=x) = X3oo(=1)"1" By (x)
Equating the coefficient h" on both sides
B(=x) =(-1)"B(x)
Put x=+1
B (1) =(-1)"R(2)
- Py(1) =1
F(-1) = (-1)"
2.7 RECURRENCE RELATION:
1. (2n+1) X Py(X) = (n+1) Ppea(X) + N Pra(X)

2. N Pp(X) =XPy’(X) - Pn1’(X)
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3. (2n+1) Py(X) = P’pea(X)-Pna (X)
4. (N+1) Po(X) = P"nsa(X)- XPy"(X)

5. (1-X%)Py’(X) = N[ Pna (X) -XPa(X) ]

6. (1-x%) Pn’(X) = (n+1) [XPn(X)- Prs1(X)]

7. (2n+1)(x*-1) Py’(x) = n(n+1)[ Prea(X)- Prt ()]

Proofs:

1) (2n+1) X Pa(X) = (n+1) Pps1(X) + N Ppa(X)

From the generating function of Legendre Polynomial we have

(1-2xh+h?) Y2 = 3=_ h" P, (x)

Differentiate w.r.t. “h’ on both sides

—(1-2xh+h?)*2(-2x42h) = Tp_o nh" " By (%)

-1

(1-2xh+h2) 2 _ @ -1
(x-h) m = Zn=onh" " By(x)

(x-h)X%_o A" B, (x)= (1-2xh+h?)X%_, nh™ ! B, (x)

XEpmo ™ Po(x) -h X7 o h"™ Py(x) = X3_onh™ ! Py(x) -2xh X7 o nh™ ™ By(x)
+ Y% nh™ 1 P, (x)

Comparing the coefficients of h" on both sides

XPn(X) — Pna(X) = (n+1) Ppsa(X) — 2XnPy(X)+(n-1)Pn-1(X)

2XNPR(X) +XPn(X) - Pp1(X)-nPpa(X) + Pra(X)-(n+1) Prer(X) =0

~(2n+1) X Py(X) = (n+1) Pre1(X) + n Ppa(X)

2) N Pp(X) = XPy’(X) - Pnt’(X)

From the generating function of Legendre Polynomial we have
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(1-2xh+h?) Y2 = 322 h™ By (o)==~ ©
Differentiate w.r.t. ‘h’ On both sides
—(1-2xh+h?) 2 (-2x+2h) = 2o nh™ 1 By (x)
(x-h)(1-2xh+h?)*?= ¥%_ nh™1 P, (x)------- ©)
—(1-2xh+h?) ¥ (-2h) = B0 " B ()

h (1-2xh+h*)*% = ¥ o A" By’ (x)-------- ©

dividing equation (2) by (3)

(x=h) _ Eieonh™ 'Pp(x)

R I hth)

(x-h) Xazo h™ By (x) =h Xi_onh™ 1 Py (x)

X n=o W By (x) - hE7Zo A" By (x) = h E7_o nh™ ™ Py (x)
equating the co-efficient of h" on both sides

X B, (x) - Pna’(X) = n B, (x)

=N Pu(X) = XPy’(X) - Pna’(X)

3) (2n+1) Pn(X) = P’ne1(X)-P’n1 (X)

From the first recurrence relation we have

(2n+1) X Pp(x) = (n+1) Ppag(X) + N Pra(X)

Differentiate above equation w.r.t “x” on both sides

(2n+1) X P*,()+ (2n+1) Pn(X) = (n+1) P’nia(X) + N P’a(X)

@n+1)[X P*(X)*+Py(X)] = (n+1) P’ra(X) + n P*h4(X)
Consider recurrence relation(2)

N Pa(X) = XPy(X) - Pna’(X)
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X P73(X) = N Py(X) + Ppa’(X)

Subtract value x P*,(x) from equation (2) in equation (1)
(2n+1)[N Po(X) + Ppa’(X) + Po(¥)] = (N+1) P’hia(X) + N P7ha(X)
(2n+1)(n+1) Po(X)+ (2n+1) P’a(X) = (N+1) P'aa(X) + 1 Pa(X)
(2n+1)(n+1) Po(X) +2n+1-n)P7,4(X) = (N+1) P7pea(X)
2n+1)(n+1) Po(X) + (M+1)P*1(X) = (N+1) P pea(X)

(2n+1)Po(X) + P1(X) = Pnea(X)

& (2n+1) Py(X) = P’aua(X)-P"ns (%)

4) (n+1) Po(X) = P’nua(X)- XPn’(X)

From “3” recurrence relation we have

(2n+1) Py(X) = P’na(X)-P"nt (X).eeeeve. @®

From “2” recurrence relation we have

NPL(X) = XPy’(X) - Pra’(X)eeeeenneen ©)

Subtracting(2) from (1)

®-@

(2n+1) Py(X) - N Py(X) = P’ ra(X)-P"na (X)XPy’(X) + Ppa’(X)
(2n+1-n) Py(X) = Pua(X)-XPy"(X)

2(n+1) Po(X) = P’ nea(X)- XPy’(X)

5) (1-X%) Py’(X) = N[ Pn1 (X) - XPn(X) ]

From the fourth recurrence relation

(n+1) Py(X) = P"haa(X)- XPy’(X)

Replacing ‘n’ by n-1
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(N-1+1)Pp.1 (X)= P’n.141(X)- XP’n2(X)

NPt (X)  =Py’(X) - XP?ha(X) ... @)

From the ‘2’ recurrence relation

N Pa(X) = XPy"(X) - Poa’(X)

multiplying above equation with x

nX Po(X)= X?P, " (X) - XP’ra(X) ......... ©)
Subtract (1) - (2)

N Pa(X) - NX Pa(X) =Py’(X) - X°Py’(X) - XP"ha(X) + XP’h1(X)
N [Pra(X) - XPy(Xx)]=(1-X3)Py(X)

& (1XAP(X) =N [Pry (X) - XPu(X) ]

6) (1-x%) Pn’(X) = (N+1) [XPn(X)- Prea(X)]

From “1’ recurrence relation

(2n+1) X Py(X) = (N+1) Prag(X) + N Pra(X)
(NN+1)X Po(X)= (N+1) Pra(X) + N Pra(X)

(N+1) [X Pa(X)-Pnsa(X) 1 = 0 [Pra(X)-X Po(x) ]
From 5" recurrence relation

(1-XPy () =n[Paa (X) - XxPn(x)]

From equation (D&(2)

(1-X*)Py"(X) = (+1) [XPn(X)- Pres(X)]

7) (2n+1)(x*-1) P’(X) = n(N+1)[ Pres(X)- Pry (X)]

From 5" recurrence relation
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(1-X)Py’ () =N [Prr (X) - XPu(¥) ]

(1-x2)
n

P(X) = Pha (X)) -XPn(X)

X Po(X) = P (x) - 2P (x) ... ©)
From 6" recurrence relation

(1-x°)Py’ (X) = (N+1) [XPa(X)- Prea(X)]......... ©)

Substitute the value of x P,(x) from (1) in (2)

U2 (%)~ Prea(X)]

n

(1-X*)Py"(X) = (n+1) [P (X) -

n+1

- +1)(1-X)Py’(X) = (N+1) [Pr1 (X) - Prea(X)]
(2n+1)(1-x2)Pn’(x) = n(N+1)[Pp-1 (X) - Praa(X)]

Write the values of P1(X), Pa(X) , Pa(X) & P4 (X)
Pl(X)
From Rodrigues formula of Legendre Polynomial

1 d*(x?2-1)"
2N n! dx™

Pn(X) =

17p2_1\1
Forn=1P(x) =—— 1_1!—d (lel)

d(x*-
Py (x) =3 XD

=P1(X) =% .2X

= Pi(X) =x

P2(X)
From Rodrigues formula of Legendre Polynomial

1 d*(x?2-1)"
2" n! dx™

Pn(X) =
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For n=2

_ 1 di(x?-1)?
Pa(x) = 2221 dx?
P(x)= - LD

4x2 dx?

1d[2.2x.(x%-1)]
Pag =5 =

Pa(x) = % [ (x%2 —1) +x.2x]
Po(x) = > [ 2x2+x% — 1]

Po(x) = ~(3x2-1)

P3(x)

Pn(X) = ﬁ%
For n=3

P3(x) = i%
Po) = )
Ps(x) = 1 d?[B(x?-1)2.2x]

48 dx?

_ 1 d*[6x(x*-1)]

48 dx?

1dgd

=5 X (x® —1)%]
14

=5 (x? —1)? + 2 x(x? — 1).2X]

= el (7 D2+ 4x? (x? ~ 1))

= ~[2x.2(x? — 1)+ 4.2x (x? — 1) + 4x2.2x]
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= = [4x3-4x+8x>-8x+8x°]

P5(x) = 5[5x°-3x]

1 d*(x?-1)*
16x24  dx*

P4(X) =

1 d34(x?-1)32x
16x24 dx3

_ 1 addx(x?-1)3
Tox24  dx?

1 d?[x.3(x%2-1)22x+(x2-1)3]
T 2x24 dx?

1 d?[6x2.3(x%-1)?+(x%-1)3]
T 2x24 dx?

= —— 6. [2x.(x? — 1)?+x2.2(x? — 1).2x +3 (x? — 1)2.24]

T 2x24

=1 L2 (x? — 1)2+4x7 2(x2 — 1) + x(x% — 1)7]

== [2.(x — 1)?4+2x.2(x? — 1)2x+4.3x% (x? — 1)+4x3 2x+(x? — 1)24+x.2(x? — 1).2x]

=%[2-(x4+1-2x2)+8x4-8x2 +12x*-12x%+ 8x*+x*+1-2x% +4x*-4x?]
= %[2x4-4x2 +2+8x*-8x2+12x*-12x% +8x*+5x*-6x2+1]

Py(X) = %[35x4-30x2 +3]

Ps(x) = {63 x5-70x3+15x]

2.8 PHYSICAL APPLICATIONS:

Legendre's differential equation appears in various physical applications, especially in systems with
spherical symmetry. Here are some key physical applications where this equation and its solutions

play a crucial role:
Electrostatics:

In electrostatics, Legendre's equation arises when solving Laplace's equation in spherical coordinates
for systems with azimuthal symmetry. For instance, when determining the electric potential @(r,0) in

the absence of free charge:
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V2 ©=0
The solution often separates into radial and angular components. The angular part leads to Legendre's
equation:

d _9dd>+ (n + 1)singd
7 St o+ nn sin

Here, the solutions p,, (cos@) describe the angular dependence of the potential.
Gravitational Potential:

Similar to electrostatics, the gravitational potential around a spherical mass distribution can be
described by Laplace's equation. The angular part again leads to Legendre functions, describing the
potential's angular variation due to non-uniform mass distributions.

Heat Conduction in Spherical Objects:

In steady-state heat conduction problems for spherical objects, Legendre's equation arises when the
temperature distribution depends on the polar angle 6\thetad, such as in spherical shells or spheres
with azimuthal symmetry.

Acoustics and Vibrations:

In acoustics, when studying sound waves in spherical cavities or around spherical objects, the wave
equation in spherical coordinates often leads to Legendre's differential equation for the angular
component.

Antenna Theory:

Legendre functions model the radiation patterns of antennas, especially when the antenna has

spherical symmetry or when analyzing the far-field radiation in terms of angular distribution.
Geophysics:

Legendre polynomials are used to describe Earth's gravitational and magnetic fields. Models like the
geoid (Earth’s equipotential surface) use spherical harmonics, where Legendre functions play a
central role.

Optics:

In optical systems with spherical mirrors or lenses, Legendre functions describe the angular variation
of light intensity, especially when considering diffraction effects.

Celestial Mechanics:

When studying planetary orbits and gravitational interactions in celestial mechanics, Legendre
polynomials help expand the gravitational potential due to non-spherical mass distributions (e.g.,

Earth's oblateness).
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Magnetostatics:

Legendre functions describe magnetic fields around spherical conductors or in systems where the

magnetic potential has spherical symmetry.
These examples highlight how Legendre’s equation and its solutions are integral to modeling and
solving complex physical phenomena in systems exhibiting spherical symmetry.

29 SUMMARY:

Legendre's differential equation is a second-order linear ordinary differential equation commonly
encountered in physics and engineering, especially in problems exhibiting spherical symmetry. The

equation is:

2
(1-x%) % - 2X Z—z +n(n+1) y =0,
Where X is constant.

2.10 KEY TERMS:

1) Legendre Polynomials: When n is a non-negative integer, the solutions to this
equation are the Legendre polynomials, denoted by p, (x).. These are a set of

orthogonal polynomials over the interval xe[—1,1].
2) General Solution: For integer n, the general solution is:
y(x) = Ap;(x) + BQ; (x)..
Where:
o p;(x) is the Legendre polynomial of degree lIl,

e Q,(x)is the Legendre function of the second kind, which often has
singularities at x=+1

e Aand B are constants determined by boundary conditions.

3) Rodrigues' Formula: Legendre polynomials can be explicitly calculated using

Rodrigues' formula:

_ 1 d™x?-1)"
Pn(X) Tonpl dxm

4) Orthogonality: The Legendre polynomials satisfy the orthogonality relation:

S P QP ()dx = o 6
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2.11

2.12

SELF ASSESSMENT QUESTIONS:

1)
2)
3)

Explain about the power series solutions of Legendre’s equation?
Briefly explain about the Generating function of Legendre’s equation?

Explain about the Orthogonal properties of Legendre’s equation?

SUGGESTED READINGS:

1)

2)

3)

4)

“Mathematical Methods for Physicists” by George B. Arfken, Hans J. Weber, and
Frank E. Harris

e This book offers a thorough treatment of special functions, including Legendre

polynomials, and covers their derivation and applications in physics.
“Advanced Engineering Mathematics” by Erwin Kreyszig

o Kreyszig's book provides detailed explanations of Legendre’s equation in the context

of solving boundary value problems and includes practical engineering applications.
“Mathematical Methods in the Physical Sciences” by Mary L. Boas

e Boas provides an accessible introduction to special functions, including Legendre

polynomials, with applications in physics and engineering.
“Applied Partial Differential Equations” by Richard Haberman

e This book discusses Legendre's equation in the context of solving partial differential

equations, particularly Laplace’s and Poisson’s equations in spherical coordinates.

Prof. R.V.S.S.N. Ravi Kumar
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ASSOCIATED LEGENDRE EQUATION

3.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Associated Legendre
equation. The chapter began with understanding of Associated Legendre equation,
Orthogonal Properties of Associated Legendre’s function. After completing this chapter, the
student will understand the complete idea about Associated Legendre Equation.

STRUCTURE:

3.1 Introduction

3.2  Associated Legendre Equation

3.3  Associated Legendre Function

3.4 Orthogonal Properties of Associated Legendre’s Function
3.5  Summary

3.6 Key Terms

3.7  Self Assessment Questions

3.8 Suggested Readings

3.1 INTRODUCTION:

The associated Legendre equation is a second-order linear differential equation that arises
frequently in the context of solving physical problems, particularly in spherical coordinates.
It is often encountered in problems involving angular parts of solutions to Laplace's equation,
such as in the case of spherical harmonics.

3.2  ASSOCIATED LEGENDRE EQUATION:

The differential equation

5)y=0

X

a? d
(1-x2)d—;2/-2x£+(n(n+1)-17f

If “v’ is the solution of legendre equation then

m om
a- xz)?zx—,ﬁ is the solution of associated legendre equation



\ Centre for Distance Education 3.2 Acharya Nagarjuna University

Proof:-
Since ‘p’ is the solution of Legendre equation

We have
d?v . dv
(1 — Xz)@-ZXE'l'n(n"'l)V:O

Derivative above equation with respect to “x’ upto to ‘m’ times using Leibentz theorem,we

have
oy dMt2y d™tly 2m(m-1) d™v dmtly  d™y d™v_
(1 —X ) dxm+z dxm+1 2! dx™m { dxm+1+mdxm} * n(n+1)dxm_0
dmtZy dmtly (m—-1+1),d™v d™v_
(1 —x?) ——5 - 2AAm+]) X o= - 2m [——]— + {n(n+1)-m(m+1)}-—=0

d™v
Let us take v, for —-
dx

a? d
(1 —x?) dx”; - 2(m+1) xﬁ + {n(n+1)-m(m+1)}v,;=0 ........... 1
Now let
_ a2 m d™vy
Z=(1—x*°)= Tom

Z=(1—x?)2v,

-m
v,=z(1 — x?)2
Derivative with respect to “x’

dvi_ =My 2yl
A2 —xf) 2

a1 _ 1 2y 7 2y —x2) 21
dx—(l x)zdx mxz(1 — x“) 2

d2U1

=M 2y o) (1 — x2) 1 22 2yl
rr (1—x°) > (ZX)dx+(1 xX%) 2 dx2+mX(1 xX%) 2 o Tmz
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(1—x2) 72 L (L - x2) 2 emxe(2-1) (L - x?) 22 (-2%)

dU1

dz _Mg2y _Mm_4dz N2 q 5_—m
dx —mX(l — Xz) 2 _x +(1 — Xz) 2 @ +mX(1 — Xz) 2 E‘HT]Z(]. - X ) 2 -2mx Z(T-

1) (1 -x2)72 72

ZZxZ — (1 — x2) 2 _+2mx(]_ — x2) 2 = +mz(1 —x ) 2 1+I‘T](I‘T]+2)JCZZ
(1—x? 772

Multiplying the above equation with(1 — x2)
(L-2) L% = (1 —x2)% " Toomx(1 - x2) 77 2 4mz(1 — x2) "z +m(m+2)x?z (1 -

xz)_%_1
(1 x2)% [(L - x?) “2ramx +mzem(m+2)x2z (1 - x)]
Sub above values in equation 1 then

(1—x2)2 [(1— x2) Ll omx e emz+ M} 2(m+L)X[(1 — x?) "2 &

+mxz(1 — x2)"2 " +{n(n+1)-m(m+1)} (L — x2) 7 2=0

2
(1-x2)2 [(1 — x2) —+2mx +mz —m(zw'z)x “1-2(m+1) xdz - zemimt1)z (rfle;;nz

+[n(n+1)-m(m+1)z]=0

mx?z[m+2-2(m+1)]
(1-x2%)

1 — x? ﬁ-ZXd—Z+mz+ +n(n+1)z-m(m+1)z=0
dx? dx

2y 4%z, dz m?x? Z_L
(1—x )dx2 2xd < (L n(n+1)z-m?z=0

5 + 1)+n(n+1)z=0

d
(1—x? )d ~-2x —Z-l"_‘z +n(n+1)z=0
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(1- xz)

mamy . . . .
Hence z=(1 — x2) "z dx—:l is the solution of associated legendre solution

Note:

6y 1 9%y
Put x=cos0 the equation can ritten as — —
q be writte as 3 eae(s ae)sm29 8292

+[n(n+1)-—2—]y=0
Y=cp™(cos0)
3.3 ASSOCIATED LEGENDRE FUNCTION:

The associated legendre function p]* is defined as

m dm
r) = -

Solution:

Using Rodrigues formula of legendry polynomial

Pr(0)= L (x? — 1)

m+n

m(x) = (1-x?)*2

S (2= 1"

d m+n

3.4 ORTHOGONAL PROPERTIES OF LEGENDRY POLYNOMIAL:

2(n+n)!
2n+1)(n-m)!

!

f_+11 pr(x)  pr(x)dx = dnn

Where é6nn'’ is called as Kronecker delta function

Where énn’ =0 whenn #n'

onn’=1 when n=n'
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Case-I
When n=n'
The associated legendre equation is

d?y dy m?
— 2y 2 _ - — =
1-—x )dx2 2x O + (n(n +1) 1 x2>y 0

1711;2)3] =0 . 1

Lia-x)2+(

Let p(x) and pIt(x)are the two solutions of associated Legendre polynomial

Then

d d 2

a{“— ) p:z( )} ( ("+1)—1Tx2>pl{‘(x)=o e 2
%{(1_ )dpm( )} ("'(”'+1)— m )pn,(x)— 3

Multiplying equation 2 with pZt(x) and equation 3 with p*(x) then

o1 | @ =) P2 i) (mtn+ ) = £ ) =0

2

) e @ =) P o) (a4 1) -

i ) =

Subtract above values and integrate with respect to ‘x” between the limits -1 and +1 then

ey 4 N D) Hnd 14169
j_l 124 (X)a[(l—x ) I ldx_j—1 124 (X)a(l—x ) Ix dx

+j [”(”+1)‘1sz—"'("'+1)—1 1o ()pm(x) =0
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(x)}“ j(l_ dpp () dp) |

{pnl( )(1 - ) dx dx

d

- (x){a— )d”ﬁf’c)} - dx

j(l— dp (x)d + j[n(n+1) n'(n’ + )] prt(x)py; (x)dx

{pnl (X)(l —X ) dpillnx(x)} [p (X) {(1 oy ) dpg}x(x)}

+1

+ j [n(n+1) —n'(n’ + )] p7()py(x)dx = 0
Applying limits

j [n(n+ 1) —n'(n" + D] p(x)p7i (x)dx =

[n(n+1)—n'(n' +1) j m(x)pm(x)dx =

f p(x)p™(x)dx = 0 when nin'

Case-l1

When n=n'

+1

| preopieoax = j POV dx

-1
We know that

m

pr(x) = (1




| Mathematical Physics 3.7 Associated Legendre Equation |

m m

+1 , +1 p 4
[ Greoyax= [ 1@ -3 pa@) TPt

Now integrate by parts formula

(@ @]~ [ o[ o] i

-1

[ eme) dx = = [ 2 pa () [(1 = 2™ L p, ()pa ()] dx 4
“dx

Now, we consider the p, (x)legendre differential equation then we have

2

1- xz)ﬁpn(X) 2xdipn(X) +n(n+1)p,(x) =0

Differentiate above equation with respect to(m-1) times using Leibentz theorem

m+1 m m-—1

(L= ) a0+ (m = Dy (-26) () + (m = Dy (-2) e pa () =0

m m-—1 m-—1

(=2x) P (6) = 20m = Ve ooy + nln + 1) ooy pn (%) =

dm+1 dm 2m—-1)(m —=2) am1
(1 - x2) dxm“ pn(x) - 2(m - 1)xdx_mpn(x) - 21 dx™- 1 pn(x)

m m—1 m-—1

d d
= 20 P (%) = 2(m — 1) P () + nln + Do pn(x) = 0

Multiply above equation with (1 — x?)™~1

m+1 m

d
1—-x»Hm P pn(x) — 2mx(1 — x?)m-1 o

——pp(x) + {n(n + 1)

m—1

—m(m ~ DKL~ xS (1) =0

m m—1

d d d
A= o p o) =~ + 1) = mGm = DY - 2™ p, () = 0
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Sub above in equation 4

m—1

Pn (X) dx

[orcoyac= | e ((n+ 1) = mm — DY - xm

+1

={n(n +1) —m(@m - 1)} j {1 —x2)m-? d

dxm—l

m—1

Pn (x)}z dx

=n+mm —m+ 1)} f_Jrll{p,’l”‘l(x)}2

m dm
2

dxm

pr(x) = [(1—x?) Pn(x)

dm
FRE)? = A= 2P

I (@)= (A - 2 L ()

Repeating the same process again “n’ terms
We have

(G m)—m+ D} [ Y

[ wreoyar
=[n+m)n-m+D][n+m-1)n-m-=2)....(n

+Dn [ s

]l{m’{‘ ()} dx

=[n+m)n+m-1).... [(n+Dnn-21)....(n—-m+2)(n—m

+1) [ payax
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R.H.S is multiplying and divided with (n-1)!

+1 I 2
[ orcopax=2m B

m)!2n+1

Now, if m>0 say m=-1 when 1>0
[ wreora = | witwyar
We know that
. o (n—m)!
{pn (X)} - ( 1) ( + )Ipn (x)

+1 +1 - —
j{p;l(x)}deZ j{(_l)l%}z[prll(x)] {E +l;|}

St j (o (O

(n-D! (n+l)I 2 ~ N 2(n—=0D!
j{(n+l)' l)'2n+1__j1 {n' (0} = T DI@n+ 1)

Since m=-1

_ N 2(n+m)
_jl o' Y dx = G T —

~ N 2(n—=0D!
j Pl dx = s

3.5 SUMMARY:

Associated Legendre functions, denoted asp;™(x), are solutions to the associated Legendre
differential equation and play a crucial role in various fields, including physics and
engineering.



\ Centre for Distance Education 3.10 Acharya Nagarjuna University

3.6

3.7

3.8

KEYWORDS:
Legendre Polynomials (p;(x): Solutions to the Legendre differential equation, a
special case of the associated Legendre equation when m=0m = 0m=0.

Associated Legendre Functions pj*(x): General solutions to the associated
Legendre equation, which can be expressed in terms of Legendre polynomials and
their derivatives.

Ordinary Differential Equation (ODE): A differential equation involving functions
of a single variable and their derivatives.

Orthogonality: A property indicating that the inner product of two functions is zero,
implying they are independent in the function space.

SELF ASSESSMENT:

1) Explain and proof the Associated legendre equation?

2) Explain briefly about orthogonal properties of associated legendre functions
SUGGESTED READINGS:

1) Handbook of Mathematical Functions

Edited by M. Abramowitz and I.A. Stegun, this comprehensive reference provides
detailed information on Legendre functions, including their properties and

applications.
2) Mathematical Methods for Physicists

Authored by George B. Arfken and Hans J. Weber, this textbook offers a thorough
exploration of Legendre functions within the context of mathematical methods

used in physics.
3) A Course of Modern Analysis

Written by E.T. Whittaker and G.N. Watson, this classic text delves into the
theory of functions, including a comprehensive treatment of Legendre functions.

Prof. R.V.S.S.N. Ravi Kumar



LESSON-4
BESSEL’S DIFFERENTIAL EQUATION

4.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Bessel’s differential
equation. The chapter began with understanding of The Power series Solutions, Bessel
Functions of the first and second kind, Generating Functions, Orthogonal Properties,
Recurrence Relations, Physical Application. After completing this chapter, the student will

understand the complete idea about Bessel’s Differential Equation.

STRUCTURE:

4.1 Introduction

4.2  The Power Series Solution of Bessel’s Equations
4.3  Bessel Functions of First and Second Kind
4.4  Generating Function of Bessel’s Equations
45  Orthogonal Properties of Bessel’s Equations
4.6  Recurrence Relations of Bessel’s Equations
4.7  Physical Applications of Bessel’s Equations
4.8  Summary

4.9 Key Terms

4.10 Self Assessment Questions

4.11 Suggested Readings

4.1 INTRODUCTION:

Bessel's differential equation is a fundamental second-order linear ordinary differential
equation that appears in various physical and engineering contexts, particularly those
involving cylindrical or spherical symmetry. It is expressed as:

2d2y+ dy+(2 2) ~0

X W Xa X" —n")y —
This equation is named after the German mathematician Friedrich Wilhelm Bessel, who

conducted an in-depth study of its solutions in 1824. The solutions, termed Bessel functions,
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are crucial in solving problems related to wave propagation, static potentials, and heat
conduction in cylindrical or spherical geometries. For instance, they are instrumental in
analyzing electromagnetic waves in cylindrical waveguides and determining the modes of

vibration of circular membranes.

4.2 POWER SERIES SOLUTION OF BESSEL’S FORMULA:

The differential equation of bessel’s polynomial is

%+%Z—i+(l—:—z>y20 . (1)
Or
xzﬂ+xd—y+(x2 —n?)y=0
dx? dx
Solution:

Let the solution of equation (1) may be assume in power series method

dx
r=0
d?y —
d—xz = Z a,(k +r)(k +7 — Dxk+r=2 (4)
r=0

Substitute above values in equation (1)

Z a,(k+7r)(k+r—21)xk2 + —Z a,(k +r)x*1 + (1 - —2> Z a,xk*t" =0
r=0 x7~=0 x =0

Z ar(k + r)(k +r — 1)xk+T—2 + Z ar(k + T)xk+r—2 + Z arxk+7" _ nz Z arxk+7"—2
r=0 r=0 r=0 r=0
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[ee]

Z alk+r)(k+r—21)+(k+71)—n?]x*72 +

r=0

arxk+r =0

i

ZaTXkHZ [k+7r)(k+7r—1+1)—n?| Z xktT=2 =0

r=0

[ee]

arxk+r—2 [(k + T)z _ nz] + Z arxk” =0 ... (5)

r=0

NgE

<
1]
o

Equation (5) being an identity we can equating to zero the co-efficient of various powers of

X
Let us first equating to the zero the lowest power of ‘x’

ex®=2 (putting r=0)
ao(k? —n?) =0
aot O (this is the first term of the series expansion)
k?—n?=0
(k + n)(k - n)=0
k=-n, k=n
k=#%n
Again equating to zero the coefficient of x*~* by putting r=0
[(k+1)?-n?]1=0

a; = 0and

[(k+1)2—n?]#0 (k = £n)
Now equating to zero the co-efficient of general terms i.ex**"

r=r+2
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ar2((k+7+2)> —n?)+a, =0
ar+2:(k+r+2+n_)cgc+r+2—n) (6)
Put r=1
a; =0
Similarly a,_as_as = a; .............= O(each)

Now two cases are arise
Case (i):
When k=n

Then equation (6) becomes

—_— _ar
Y2 TG r 2+ 2n)(r + 2)

For r=0

_aO _aO

2= on+2)2 " 22(n+ D1l

For r=2

_ —a; _ —a;
“Tn+a)a” 2Zn+2)

_ %o
S 22l(n+ D)(n+2)

Ay

Now equation (2) becomes

(o)
y= Z o
r=0

y — aoxn + alxn+1 + azxn+2 + a3x7'l+3 + a4x7'l+4 + ...
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Substitute above values in equation

n aO

_ e Qo n+4 4 ...
Y= X T g+ 1’ *

+242!(n+1)(n+2)x .......

n+1

xn+2 xn+4

= n_ =+
Y=l - D T 22 s D+ 2)

Ifay, = ZL then then above equation is called Bessel’s first kind solution and is denoted by

Jn(%)

xn+2 xn+4
[x™ — +
2211(n+1)  2%42!/(n+1)(n+2)

(_1) (g)n+2 (_1)2 (g)n+4
U+~ 2@+

1
2nn!

Jn(x)=

1
@) = =G +

o (—1)r §n+27"
Jn(x) = Z 7! (n(+)r)!

r=0

Or

o (—1) (E)HZT
Jn() = Z r'IT(n+r+1)

r=0

{(n+7r)=Tn+r+1)}

Case (ii)

When k=-n

The replace solution be obtained by replace ‘n” by “-n’ in the value of J,, (x)

) -n+2r

- (5
Jon(x) = ;r! F(—n+r+1)

The total solution of differential equation is
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y = Aly(x) + B]_,(x)

Where A and B are orbitary constants

4.3 BESSEL FUNCTION OF FIRST AND SECOND KIND:

Bessel functions are fundamental solutions to Bessel's differential equation, which arises in
various physical contexts exhibiting cylindrical symmetry. The two primary types are the
Bessel functions of the first kind{J,(x)}and the Bessel functions of the second
kind{Y, (x)}.

Bessel Functions of the First Kind {J, (x)}:

These functions are finite at the origin (x=0) for all real values of the order v. They are

defined by the power series:

e}

1 b
Jx) = Z(_l)kk! rk—+v+ 1)5

r=0

Where I" denotes the Gamma function.
Bessel Functions of the Second Kind{Y, (x)}:

These functions are singular at the origin and are often used to represent solutions that are

singular at x=0. They can be expressed in terms of as/, (x):

_ Jy (x) cos(vm) — J_,(x)

sin(vr)

Y, (x)
For integer values of v, this expression requires a limiting process due to the singularity at
x=0.
4.3  GENERATING FUNCTION:

1 (o)
x(Z_E)
e =) 2 )

n=0
:(_1)71 ?Lo=0 Zn]n ]+n (x)

)  x ox
e 2 =—ezez2z
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x—1+x+x2+x3+

e TR T

x x? x3
e X=]1l——+———+ ...

2 3l
e@ [+ 2y CR) R )

1! 2! (n—-1)!

[+ (-1) _1x/zz+( 1)2(/22) + o (1) 1(/22)

(n-1)!

n+1

( 1)n+1( /Zz)

(n+1)!

Collecting the co-efficient of z™ in the above expression

n-1 /)" (/) n R L CR)" R )M
(=1 12|(721 1)! + (D (D) n|21' nz! - (n2+1)! +2!(721+2)!+
(x/z)n . (x/z)n+2 (x/zz)n+4

n! (n + 1)! (_1)22'(n+1)'

2 (=1)T (X /- )nt2r
SR

rt(n+r)!
r=0

1 (o)
x(Z_E)
e =) 2 )

n=0

Now collecting the co-efficient of z=" in the above equation

n (x/z) n+1 (x/z)n+2 n+2 (x/z)n+4
. (x/z) (x/z)n+2 (x/z)n+4
(=D LD T2y T

. ® (_1)T(X/2)Tl+27"
D TZ(; ri(n+r)!

+ (=1)" —(x/flf)n +
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(=1)7/n(x)

x(z-1) d

e E = (1" i)

n=0

45 ORTHOGONAL PROPERTIES OF BESSELS’S POLYNOMIAL.:

If o and B are two different roots of an equation

Jn(uy=0 then orthogonal property of bessel’s function is

j]n(ax)]n(ﬁx)x dx =0
0

Proof:

From the differential equation of bessel’s polynomial

d*y 1ldy n*
W"L}E“L(l__)y_o e (D)

Let J,,(ax) ,J,(Bx) are the two solutions of above differential equation then replace y by ‘u’

and x by ‘ax’ in equation 1

d?u . 1 du (1 n? ~0o
d(ax)? axdax (ax)? “=

1d?u 1 du ( n2>
(1= u=0

a?dx? a?xdx ax?

Multiplying above equation with ‘a?x?’

d? d
xzd—xLZL+ xd—z+ (a?x?=n®)u=0 .......(2)

Replace ‘y’ by v and x by Bx in equation (1)

d?v +i dv +<1_ n? )v—O
d(Bx)* Bxd(Bx) Bx)?)
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1d2v+ 1 dv+ 1 n? ~0o
BZdx?  BZxdx Boz)’ =

Multiplying above equation with 2 x?

d? d
xzd—xz+x£+(ﬁ2x2 —n)v=0 ........(3)

Multiplying equation (2) Withz equation (3)with %

d>u  du uv

xwogtvot (@t —nf)—=0 . (4)
d>v  dv uv

XuT U+ (B ) —=0 . (5)

Subtract equation (5) from equation (4)

[ d?u d2v_+[ du dv]+ 2(q? 2)uv —o
x_vdx2 udxz_ vdx udx x%(a? —x xx—

[ d*u d*V] +[ du dv]+( 2 _ 3 2)upx = 0
X _17 dx2 udxz_ vdx udx a X“)uvx =

Integrating above equation with limits 0 to 1

1 1

d d d
ja{x [v—u— u—v]}dx+(a2 —xz)juvx dx =0
0 0

dx dx
d dv1* d
u v
x[v—— u—] +(a2—x2)juvxdx=O
dx dxl,
0
d dv1* d
u v
[v—— u—] +(a2—x2)juvxdx=O
dx dxl,
0

Un (B (@) — D (@) BJL(BOTE + (@ — x2) j Jn(@x)n(Bx)x dx =0
0
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U (Ba(a)a — Un(@BIL BT, + (a? — x2) j Jn(@X)]n(Bx)x dx =0
0

If o and P are two different roots (i.e a#p) of an equation J,, (1) = 0

i.ef, (@) =J,(B) =0

j Jn(ax)],(Bx)xdx +0=0
0

j]n(ax)]n(ﬁx)x dx =0
0

4.6 RECURRENCE RELATIONS OF BESSEL’S DIFFERENTIAL EQAUTAION:

Dxfn(x) = nfn(x) = x/n41(x)
2)x)5 (x) = —nJp (x) + x4 (x)
3)2/5(x) = Jn-1(x) = Jp41(x)
4)2nJ, (x) = x[J-1 (x) + x/n41 (x)]

5)- [x " ()] = =X 41 (x)

6) - [x7], ()] = x"p1 ()

First Recurrence relation:

x]rll(x) = n]n(x) - x]n+1(x)

We know that

[ee]

—1)" X n+2r
=y R

ri(n+r)!

r=0

Differentiate with respect to ‘X’ on both sides
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= (=1 (n+ 2r)(* n+2r-11
=Y (n+ 20/ 5

rl(n+7)!

r=0

Multiplying with ‘x* on both sides

P aANr(X n+2r X aA\r(Xx n—-1+42r
x];l(x):nz( 1)"(*/2) . —1)"(*/)

ri(n+7r)! T r—D!'(n+r)!

Let r-1=s

[ee]

xn(x) = nfp(x) + x Z

s=0

(_1)5+1(X/2)n—1+25
sl(n+1+s)!

xJp (%) = nfn (x) = xJp 41 (x)
Second recurrence relation:
xJn () = =] (x) + x4 (x)
Proof:

We know that

[ee]

—1)" X n+2r
o=y S

rl(n+7)!

r=0
Differentiate with respect to ‘X’ on both sides
1

®© (_1)r +2 X n+2r—1
Ji(x) = Z (n )( /2) 2

rl(n+7)!

r=0
Multiplying with ‘x* on both sides
1

© -1 (2 2r — X n+2r-1
x];l(x)sz( ) (2n+2r —n)(*/5) >

ri(n+7)!

r=0
R (AT (X _ \n+2r X (_1\s+1(X / \n—1+2r
x];l(x)Z—nz( 1)"(*/5) +xz( 1)1 (*/5)

ri(n+r)! sl(n—1+1)!

r=0 r=0
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xJn(x) = =]y (x) + xJp—1 (x)
Third recurrence relation:
2J5(x) = Jn-1(x) = Jn4a (x)
We know that first recurrence relation
xfn(x) =), () = xfpi () e (D)
From second recurrence relation
xfh(x) = —nJ,(x) + xf_ (x) (2)
Adding (1) and (2)
xfn () + xJ5 () = 0 (%) = 241 (x) = 1y () + ] (x)
2x]5(x).x = x[Jp-1(x) = Jn41 (x)]
2J5(x) = Jn-1(x) = Jn41(x)
Fourth Recurrence relation:
20 (x) = x[n-1 (x) + x/n41(x)]
We know that first recurrence relation
xfn(x) =), () = xfpi () o (D)
From second recurrence relation
xfh(x) = —nJ,(x) + xf_ (x) . (2)
Subtract (1) and (2) then
xJn () = xJ5 (x) = nJp(x) = 241 (x) + 1y (%) — ] (x)
20, (%) = xJn41(x) = x/p—1(x) =0

2n]n(x) = x[/n—l(x) + x]n+1(x)]
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Fifth recurrence relation:

L] = 5y ()

We know that first recurrence relation

x]rll(x) = n]n(x) - x]n+1(x)

Multiplying above equation with x =~ on both sides we have

x M p () = nx T () — 2T (%)
x () = nx T (x) = —x T (%)
d -n —_ -n

E[X Jn ()] = —x""] 1 (%)

Sixth Recurrence Relation:

d

P [x™, ()] = x™ -1 (x)
From second recurrence relation
xfn(x) = —nJ, (x) + x4 (x)

Multiplying above equation with x™~1 on both sides we have

x™p(x) = —nx™ 1, (x) + x™Jp4q (%)

x™p (x) + nx™ 1 (x) = x4 ()

e (] = 27y ()

4.7 PHYSICAL APPLICATIONS OF BESSEL’S DIFFERENTIAL EQUATION:

Bessel's differential equation appears in many physical problems, especially those involving

cylindrical symmetry. It has significant applications in fields such as acoustics,

electromagnetics, fluid dynamics, and heat conduction. Here are a few physical scenarios

where Bessel's differential equation arises:
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1. Vibration of Circular Membranes (Acoustics):

Application: In the study of vibration of circular membranes, such as drums, Bessel's
equation governs the radial displacement of the membrane.

Physical System: If a circular drumhead is stretched and struck, the displacement at
any point on the membrane can be described using Bessel functions of the first and
second Kinds.

Reason for Bessel's Equation: The solution involves cylindrical coordinates, where

the radial component of the wave equation leads to Bessel's equation.

2. Heat Conduction in Cylindrical Coordinates

Application: Bessel's equation can describe temperature distribution in a cylindrical
object over time.

Physical System: Imagine a long, solid cylinder (like a pipe) with heat applied at one
end. The temperature variation with respect to the radius and time can be modeled
using Bessel functions.

Reason for Bessel's Equation: The cylindrical symmetry of the problem leads to the
use of cylindrical coordinates, and the radial part of the heat equation in such
coordinates results in Bessel's differential equation.

3. Electromagnetic Waves in Cylindrical Structures

Application: Bessel's equation is used to describe the behavior of electromagnetic

waves in waveguides, especially those with a circular cross-section.

Physical System: In a coaxial cable, fiber-optic cables, or certain types of lasers, the

electric and magnetic field distributions can be modeled with Bessel functions.

Reason for Bessel's Equation: The wave equation in cylindrical coordinates has a
radial part that results in Bessel’s differential equation, which describes the variation

of the fields in the radial direction.

4. Sound Propagation in Cylindrical Pipes

Application: The propagation of sound waves in a cylindrical pipe, such as in
acoustical engineering or pipe organ design, often leads to solutions involving Bessel

functions.
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Physical System: When sound waves are propagating through pipes or tubes with
circular cross-sections, the radial displacement of the sound wave is described by
Bessel functions.

Reason for Bessel's Equation: The wave equation for sound in cylindrical
coordinates leads to the Bessel differential equation, with the radial displacement
being a function of Bessel functions.

5. Quantum Mechanics (Particle in a Cylindrical Potential)

Application: In quantum mechanics, when a particle is confined within a cylindrical
potential, such as in a cylindrical quantum well, the wavefunctions of the particle

often involve Bessel functions.

Physical System: For a particle in a potential that has cylindrical symmetry (like an
electron in a cylindrical nanowire), the Schrddinger equation in cylindrical
coordinates results in Bessel's equation for the radial part of the wavefunction.

Reason for Bessel's Equation: The separation of variables in the Schrddinger
equation leads to the radial equation that is in the form of Bessel's equation.

6. Fluid Flow in Pipes

4.8

Application: The flow of fluids in cylindrical pipes can also be described by Bessel's
equation when analyzing the radial velocity distribution in steady-state flows.

Physical System: In analyzing the flow of liquids or gases through pipes, especially
in the presence of specific boundary conditions (like a pipe with a circular cross-
section), Bessel functions often arise in the solution of the governing Navier-Stokes
equations.

Reason for Bessel's Equation: The radial component of the velocity field in
cylindrical coordinates leads to an equation involving Bessel functions.

SUMMARY:

Understanding and working with Bessel's differential equation and its solutions and

the complete idea about Bessel’s Differential Equation.

4.9

KEY WORDS:

Bessel's differential equation is a second-order linear ordinary differential equation that
frequently arises in problems exhibiting cylindrical or spherical symmetry. Key terms
associated with this equation include:
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o Bessel functions: Solutions to Bessel's differential equation, commonly denoted as

J«(x) for the first kind and Y, (x) for the second kind.

e Order (0): A parameter that defines the specific form of the Bessel function,

representing the equation’s order.

e Cylindrical symmetry: A system characteristic where physical properties are
invariant under rotations about a central axis, leading to the appearance of Bessel

functions in the solutions.

e Spherical symmetry: A system where properties are uniform in all directions from a

central point, often resulting in solutions involving spherical Bessel functions.

e Frobenius method: A technique used to find power series solutions to differential

equations near a singular point, applicable to Bessel's equation.

e Gamma function (I'): A function extending the factorial to complex numbers,

appearing in the series representation of Bessel functions.
e Neumann function: Another name for the Bessel function of the second kind, Y, (x)

o Modified Bessel functions: Solutions to the modified Bessel's equation, denoted as

I, (x) and I, (x), relevant for problems involving hyperbolic functions.

o Recurrence relations: Formulas expressing Bessel functions of different orders in

terms of each other, useful for computational purposes.

e Orthogonality: A property indicating that Bessel functions of different orders are
orthogonal over a specific interval with a given weight function, important in solving

boundary value problems.

These terms are fundamental in understanding and working with Bessel's differential

equation and its solutions.

410 SELF ASSESSMENTS QUESTIONS:

1) Explain about power series solution of Bessel’s differential equation?
2) Briefly explain about Recurrence relations of Bessel’s equations?

3) Write about the orthogonal properties of Bessel’s equations?
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411

SUGGESTED READINGS:

For a comprehensive understanding of Bessel's differential equations, the following
reference books are highly recommended:

Introduction to Bessel Functions

Authored by Frank Bowman, this book offers a clear introduction to the properties
and applications of Bessel functions, covering topics such as Bessel functions of zero
order, modified Bessel functions, definite integrals, and asymptotic expansions.

A Treatise on the Theory of Bessel Functions

Written by G.N. Watson, this monumental treatise delves deep into the theory of
Bessel functions, providing extensive mathematical insights and is considered a
standard reference in the field.

Advanced Mathematics for Applications

This textbook by Thomas J. Pence and Indrek S. Wichman includes a dedicated
chapter on the Bessel equation, offering practical applications and detailed
explanations suitable for advanced studies

Prof. R.V.S.S.N. Ravi Kumar.



LESSON-5
HERMITE DIFFERENTIAL EQUATION

5.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Hermite differential equation.
The chapter began with understanding of The Power series Solutions, Hermite polynomials,
Generating Functions, Orthogonality, Recurrence Relations, Rodrigues formula, Physical
Applications. After completing this chapter, the student will understand the complete idea
about Hermite Differential Equation.

STRUCTURE:

51 Introduction

5.2  Power Series Solution
5.3  Hermite Polynomials
54  Generating Functions
55  Orthogonality

56  Recurrence Relation
5.7  Rodrigues Formula
5.8  Physical Applications
59  Summary

510 Key Terms

5.11 Self Assessment Questions

5.12 Suggested Readings
5.1 INTRODUCTION:

Hermite polynomials are the power series solution of second order Hermite differential
equation with variable coefficients. They will be need mainly as a mathematical tool in
dromy of the scientific problem. Very familiar applications in quantum mechanics is the
simple harmonic oscillator. While the ground state is given by the Gaussian function, higher
states are given by products of the respective orders of Hermite polynomials with the gause
are functions.
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52 SOLUTION OF HERMITE’S DIFFERENTIAL EQUATION:

This equation is of the form

d’y dy
—2X —+2xy=0 e 1
dx? dx y (1)

where y is a parameter.

Suppose its series solution is

y= 3% ax"'. a#0 and kisaconstant = ----mmee- )
r=

Jar (k+1) (k+r-1) X<12

2
Substituting the values of y, (ill and C; { in (1), we get the identity
X X

éo [(k+r) (K+r=)xX22 (k+r-v) xX"Ja=0 - 3)

Equating the Coefficient of the first term (i.e. xX~2) (by putting r = 0, to zero, we get

a k(k-1)=0givingk=0,1asa=0  —m-ememe- (@)

Now, equating to zero the coefficient of second term (i.e. X“~%) in (3) we get
ark(k+r)=0i.e.a; =0when k=-1anda; may or may not be zero when k = 0, as the

values of k are ahead fixed as in (4)

k+r

Also equating the coefficient of X" ™ to zero, we find

a2 (K+r+2)(k+r+1)-2a (k+r-v)=0

giving the recurrence relation

 2(K+r-V)
S (K+r+2)(K+r+1)

ar+2
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when k = 0, (5) becomes Arep = _Arv) a - (6)
(r+2)(r+1)

and when k = 1, (5) becomes ay+, = Ma, ---------- (7)
(r+3)(r+2)

Case-1: Whenk =0, puttingr=0, 1, 2, 3,... in (6) we have

=2 ay ag=_20-1
do = |_2vao, as |3
STV e 2Dy 2y 2V =2).(V=2r+2)

14 5 | 2r

_ (2)"(v-1)(v-3)...(v— 2r+1)
| 2r+1

dor+1 =

Now ifa; =0, then az = as = a7y = ag+1 = ...=0.
But if a;#0, then (2) gives fork =0,y = %a,xr

e, y=ag+aX+a’ +a +...

=ap + X’ + agX +...F aX + X + asxC +...

2r

2
= Q 1—£X2+MX4—... —
2" 21

2
a1 20D o 20D
3 5

r

|2r+1

+(-D)' (V-1 (v-3)...(v—2r +)x* +:| .......... (8)

— Oo( ) 2r
= |:1 §|2r v(v 2)...(v=2r+2)x~ +. }
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»(-1)'2f
+a, x+2( ) (V-D)V-3)..(v-2r+Dx**...  ceemeeee 9)
=1 2r+1

Case Il1: Whenk =1, thena; =0 and so by puttingr=0, 1, 2,3, ... in(7)
we find

2(v-1)
I

do = — do

= 22(\/_1)(\/_3) AD tiiiiii i, a2,:(—1) 2r(2V—l)(V—3)...(V—2I’+l) do
|5 | 2r+1

Hence the solution is

LD o 2P-Dv-3) L

= apgX
i 3 5

Jr(—l)r2r(v—l)(v—3)...(v—2r+1)X2r N (10)
| 2r+1

clearly the solution (10) is included in the second part of (8) except that a, is replaced by a;
and hence in order that the Hermite equation may have two independent solutions, a; must be

zero, even if k = 0 and then (8) reduces to
2r
| 2r

2v 2%v(v -2 )
y= ao|:1_|_2X2 +%x4 -+ (=D

V(V=2)...(v=2r + 2)x* +:| ---------- (11)

The complete integral of (1) is then given by

2 2 _
y= Alil—&xz +#x4 —} + Bx {1— 2(‘;;1) N (V_Il;(v 3) s _}

12

where A and B are arbitrary constants.
Where v is an integer, then the resulting solution is called Hermite Polynomial. The arbitrary

v v
constant A and B are taken as (-1)""2.=and (-1) 2 respectively.
v

2
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In equation (12), the series with coefficient A alone is taken as the Hermite Polynomial of
even order vand that with coefficient B alone is considered as Hermite Polynomial of odd
order v.

5.3 HERMITE POLYNOMIALS:

The Hermite polynomial H, (x) is defined as

0= € = % Hy(X) e (13)

for all integral values of n and all real values of x. (At a later stage, it will be proved that the

exponential function is the generating function of Hy (x)) (13) can be written as

H, ) H, ()

f(x, t)=ex et Ho W H: (9 t+ P+ .+ "+ ..
u L 2 n
Sothat | ST | Ha O oy 6
a g, =
= {a_n (X-t)2:| eX2 __________ (14)
at t=0
Ifweputx—-t =p ie. t=x-pfort=0givesx=p
and 2 = ~% 5o that a—n {e"x")z } = (—1)”6— e”
ot op ot op"
O W 0" dh
Sl =8 =(-1 e’ =(-1 R 15
{8’[” L -1) P -1) v (15)
From (14) and (15), we therefore have
x? n d’ x? : ’
Hn (X) = e (-1) o~ (e ) (Rodrigue’s formula) ---------- (16)
X

From (16) we can calculate Hermite polynomials of various degrees such as



\ Centre for Distance Education 5.6 Acharya Nagarjuna University

H,(x)=1 H,(x) =16x"* — 48x* +12

H, (x) = 2x H, (X) =32x° —160x° +120x
H,(X)=4x*-2  H,(X)=64x° —480x* +720x* -120
H,(X)=8x%-12x H,(x)=128x" —1344x° +3360x° —1680x

54  GENERATING FUNCTIONS:

tn

Q: To prove thate® = £ —
=0 nl

Hn(x). Where e®* is called the generating function of
Hn(X).

Solution: We have

12
etht - e2tx e

r S r
P ¢ M 53 I 1) (s
=0l s=0 gl rs=0 rlgl

. Coefficient of t" (for fixed value of s)

(20"

=D (n-2s)!s!

(put r + 2s=n)

But the total coefficient of t" is obtained by summing over all allowed values of s, (for r =n -

25 >0)

.n=25>0i.e.s<(n/2). Sowe can say, that if n is even s goes from 0 to (n/2) and if nis

odd, sgoes fromOto (n—2)/ 2.

[n/2] n-2s
Hence required coefficient of t"= ¥ (-1)° (2x) - H.()
s=0 (n-2s)!s! n!

(Here B} means the greatest integer that does not exceed %).

w 4N
x2-(t-x)? t

2 ® tn .
=™ z —Hi(x) ie., e =3 — H(®X).
n=1 nl
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55 ORTHOGONAL PROPERTIES OF HERMITE POLYNOMIALS:

Now since Hy(x) is a solution of Hermite equation, we have

H""n(X) — 2x H'n(X) + 2n H'n(X) = 0 by (22)

If we puty = e* /2 Hn(x) i.e., Hn(X) = ye*'’?

So that H'n(X) = y' /% + xye* /2

and H"y(X)=y"e* "2+ 2xy' /2 +y(1 +x%) X2

thenwegety”’ + (1 —x*+2n)y=0  ceeeeeeeee (30)

Sincey = g*'/2 Hn(X) = wn(X) by (26), it therefore follows that yn(x) satisfies (30) and hence
viht@n+1-x)y,=0 e (31)

for a function yn, this relation is

Yvint+t@m+1-x)yn=0 e (32)

Multiplying (31) by wm; (32) by y, and subtracting we get
2(m=n) yoyn =ymy " n=yny"m e (33)

Integrating over (—oo, o), we have
2(m - n) .[iow YmWn dx = .[iow (\Vm\lf”n - \Vn\lf”m)dx

VA o (T e A e (on integrating by parts)

~yn(X)—0 as |[x| > for all positive integral values of n.

or [” Ymyndx=0 ifm=n

symbolically In n = J* wmyndx = [*. e* Hn(X) Hy(X)dx = 0



\ Centre for Distance Education 5.8 Acharya Nagarjuna University

whenm=n e (34)
Inparticular ln_1,n+1=0 e (35)
Now from (28) we have 2X yn(X) = 2ny,-1(X) + yn+1(X)
27 2% wn(X) was1 dx =20 17w 1(X) + o 1(X)
[Z Wn_1* yn+1 dx = 0 by (35)
=2nlh_1ner e (36)
Also yn(X) = e /2 Hy(X)

a4

= (e 6 Joy (26)

Thus (36) gives

~[ 2xe*’ dd):n (e'xz) ddx”il (e'xz)dx =2nlh_1,n-1

dn

or 2n In—1,n—1 = _.[ioood (exz)
dx

(e.XZ)dCi% (e'xz)dx

dx" “dx "

n n-1 @
:{eXz d &™) d (e'xz)} + 7, e

{dd):n (e'xz) dd):n (e'xz) dd)::il (e'xz);X—Z(e'xz )} dx (on integrating by parts)

= 0 + |n1 nt In+11n—1
=1y, n by (35)
Sdwn=2nlh2020 e (37)

Applying (37), repeatedly, we have
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In, n=2n lh-1n-1= 2n Z(n_ 1) lh-2,n-2
=2°n(n-1).2(n=2) Ih_3,n_3

=2°n(n-1) (N=2) ln_3,n-3

=2"n(n-1) (n-2)......3.2.1 lp, 0
where lo, o= [*, ¥ dx = /7 (From Beta and Gamma functions)
clwo=2nnNz e (38)
Combining the two results (34) and (38); we have in terms of Kronecker delta symbol
Imon=J7, € Hn() Ho(¥) dx=2"|n 7 8mn oo (39)

Where 8m,n =0 when m=#n
=1 when m=n.

(39) may also be written as
L 0 =172, Wim(X) Wa(X) dX = 2, € Hin(X) Ha(X) dx
=2"In VT dma e (40)
Again 2X yn(X) = 2n yn-1(X) + yn+1(X) gives
[ X ym(X) wan(X) dX = Ny, ooy + %Im, el

=0form=#n=1

" 1
and .[—oo X YnWne1(X)dX =N Fpeg, o1 + E Inetn-1
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= l2”*1| n+1+/7 asabove

N

=2"(n+1) vz form=n

Hence |7, X ym(X) wa(X) dx = 2" n+1 47 8myn meeeees (41)
Further 2n yy,-1(X) = X yn(X) + @'n(X) gives
Iio Ym(X) y'n(x) dx = 2n Iio Ym(X) wn-1(x) dx —Iiox Ym(X) Wn(X) dx
=0ifm=#n=1
and 2nlpg,0-1-2"""|n 7 ifm=n=1
=2"\nJr-2"""|nzr =2t nVx
Hence |, wm(X) w'n(X) dx = 2" [n /7 8m, n
In the last if we take m =n + 1, then
17 wm(¥) w'n(x) dx = 2n 17, wrnea(¥) wn-1(X) dx =17, wnea (%) win(X) dx
=-2""'|nr.

Q: Prove that Hy(—x) = (=1)"Hq(X)

. © H (x)t"
Solution: We have X H, 0t =2t = o
n=0 | n n=0 | n n=0 |

o n2 (_1\K n-2k

=0 k0 | k|n -2k

n

. .. t . .
Equating coefficient of |_ on either side, we get
n
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_ w2 (=) | n (2x)"*
0 = 2, |k |n-2k

Replacing x by —x we get

A (=) n (-2x)"*
Hn(_X) - kE::O |£| n- 2k

_ [rgz] (_1)k(_1)n-2k m(zx)n-Zk
K |k|n-2k

2 (=1 | n (2x)"*

=(-1)"3
D72, |k [n-2k

= (=1)"Hn(x)
Q: Prove [, xe™ Hn(X) Hn(X) dx = vz [2"7" | n 8m,no1 + 2" N + 18041, m]

Solution: Integrating by parts we have
J7, xe™ Ho(X) Hi(X) dx =] —%e'szm H o (%) dx}

1, ., d
+EI_we d_X{Hn(X)Hm(X)}dX

=0+ 7 eX {H' ()H, () +H, (X)H, (X) Jdx

[# e [2nH,_,(x) H (X)+2mH_ (x)H,_,(x)dx]dx

N |~

by (20)

=n[” ™ Hy-1(X) Hm(X) dx + J*_ e Hn(X) Hm-1 (X) dx

=n \/;Zn_l I N-10m,n-1+m \/;an_namm—l

(by orthogonal properties)
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= \/;[Zn_l I_n6m1 n-1 + 2n| n +16n+11m]

" Onym—1 = On+1, m-

5.6 RECURRENCE RELATIONS:
1)  H(X) =2nHpa (X)
2)  2xHy(X) =2nHpa (X) + Hpe1 (X)
3)  Hy (X)=2xHp(X) = Hue1 (X)

2tx—t? _ yoo L' Hp(x)
€ Tan=0 4

2tx—t? ot = yo M Hn!(x)
€ FE T am=0

t" Hp(x) _ o tMHp(x)
- n=0

2t. Y50

n! n!

Comparing the coefficients of t" on both sides

2Hp—1 (x) _ Hp'(x)

(n-1)! n!

2Hp—1 (¥) _ Hp!(2)
(n-1)! n(n-1)!

2nH,_, (x) = H,'(x)

H,'(x) = 2nHy,_4 (x)

1) STATEMENT: 2X Hy(X) = 20 Hog (X) + Hyez (X)

Proof: Consider Generating Function

2tx—t? _ yoo L' Hp(x)
e - n=0 n!

Differentiate the above equation with respect to t on both sides

nt™ 1H, (x)

—t2 [o'e)
et (2x-2t) = XM —
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o tTHp(x) o thHp(x) _ o Nt 1H,(x)
D e ) . T

Comparing the coefficients of t" on both sides

2% Hp(x) _ 2Hp—1(x) - (n+1)Hp41(x)
n! (n-1)! (n+1)!

2% Hp(x) _ 2Hp—1(x)n - (n+1)Hp41(x)
n! (n-1)! n (n+1)n!

2X Hio(X) =2nH 1 (X) + Hper (X)

3) STATEMENT: Hy’ (X) = 2X Hy (X) = Hns1 (X)
Proof: Considering Recurrence relation 1.

Hy =2nHpa (X)

Considering Recurrence relation 2

2X Hn(X) = 2n Hpp (X) + Hpea (X)

Subtracting eq (2) fromeq (1)

Hy' (X) - 2xHy(X) = 2nHpg (X) - 2nHpa (X) - Hpe (X)
Hn' (X) - 2X Hq(X) = Hpsr (X)

Hy' (X) = 2xHn(X) + Hper (X)

5.7 RODRIGUES FORMULA:

. 0 x2 dMe ™)
Statement: H,(x) = (-1)"e o
Proof: From the generating function of Hermite Polynomial

2tx—t? — o t" Hp(x)
n=0 n!

e

tH1(x) + t2Hy(x) + Lt Hy (%), tMHp (x) "M Hpyq ()

e’ ~(t=0)* = H + e . .
1! 2! (n—1)! (n)! (n+1)!
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Now partially differentiate above equation up to n times with respect to t and then putting t=0

2 dM (e %) | ()
¢ dtn =0 " n!

e’ G

Py |t=0 = Hx(X)
t-x = u
dt=du  att=0
u=-X

2
x2 d¥(e ™) |
dun t=0

Ho(X) = e

x? dn(e_xz) |
d(_x)n t=0

H() = (-1 L0
n dx™

Ha(-X) = (-1)"Hn(x)
From the generating function

2tx—t? _ yoo L' Hp(x)
€ Tan=0 g

Substitute x = -x on both sides

—2tx—t? — yoo " Hn(-%)
e - n=0 n!

Substitute t = -t on both sides of (1)

—2tx—t? —yoo (" Ha(x)
e - n=0 n!

From (2)and(3)

n=0 n! n!

o tTHp(=x) _ Zoo (=t)" Hp(x)
- n=0
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Comparing the coefficients of t" on both sides

H(=X) _ (=D)" Hp(%)
n! n!

H,(—x) = (-1)"H,(x)

1) Hn’ = 2n Hn.]_ (X)
5.8 PHYSICAL APPLICATIONS:

The Hermite differential equation is another key second-order linear differential equation

that arises in various physical contexts. Its general form is:

d’y dy

— —2x—+2ny =

dxz Xax Y 0
where n is a non-negative integer, and y(x)y is the unknown function. The solutions to this
equation are known as Hermite polynomials for integer n, and they play an important role in
various fields of physics. Here are some of the main physical applications of the Hermite

differential equation:
1) Quantum Mechanics (Harmonic Oscillator)

e Quantum Harmonic Oscillator: One of the most important applications of Hermite
polynomials is in the solution of the quantum harmonic oscillator problem. In
quantum mechanics, the Schrédinger equation for a particle in a harmonic potential
leads to solutions that are expressed in terms of Hermite polynomials. The energy
eigenfunctions of the quantum harmonic oscillator involve Hermite polynomials and a
Gaussian factor.

The radial part of the wavefunction for the harmonic oscillator in one dimension is of
the form:

2

W, (x) = Nype 2 Hy()

Where H,,(x) is the Hermite polynomial of degree n, and N,, is a normalization factor.
These wavefunctions describe the allowed quantum states for a particle in a harmonic

potential.
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2) Optics (Gaussian Beams):

Laser Beam Propagation: Hermite polynomials also appear in the description of
Gaussian beams, which are solutions to the wave equation in optics. A Gaussian
beam's spatial profile can be expressed using Hermite-Gaussian modes, which are the
eigenmodes of the paraxial wave equation.

These modes are of the form:

x%+y?

w?(2)

Unn(x,y,2) = Hp exp —

X g Y
w(z) " w(z)
where H,,(x)and H,(y)are Hermite polynomials, andw(z) is the beam waist that
depends on the axial position z. These beams are used in optical systems, such as laser
cavities, optical tweezers, and micromanipulation.

3) Heat Conduction Problems (Fourier Series Expansion):

Heat Conduction in a Semi-Infinite Solid: In the study of heat conduction, the
Hermite differential equation arises in the solution to problems involving the
diffusion of heat in a semi-infinite solid. When solving the heat equation using
methods such as separation of variables, one obtains solutions that involve Hermite
polynomials, especially when the temperature profile exhibits Gaussian behavior.

The solutions often take the form of Fourier series expansions in terms of Hermite
functions, which help describe the distribution of heat over time.

4) Statistical Mechanics (Gaussian Distribution):

Gaussian Distribution and Central Limit Theorem: In statistical mechanics, the
Gaussian distribution (which is related to the normal distribution) is closely linked
to Hermite polynomials. The probability distribution of particles in certain systems,
such as in the case of the wvelocity distribution of gas molecules in classical
thermodynamics, involves a Gaussian function. Hermite polynomials are used in the
expansion of such distributions in series, particularly in statistical mechanics.

In the context of the Central Limit Theorem, Hermite polynomials appear in the
series expansion of the characteristic function of the sum of independent random
variables, showing how distributions approach a Gaussian shape as the number of
variables increases.

5) Electromagnetic Wave Propagation

Waveguides and Fiber Optics: In the study of wave propagation in waveguides and
optical fibers, the mode solutions often involve Hermite polynomials. For example,
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in the analysis of the electromagnetic fields in rectangular waveguides, the field
solutions can be expressed as products of Hermite polynomials and sinusoidal
functions. This is particularly true for rectangular waveguides or fiber optics, where
the transverse electric and magnetic field components are described by Hermite
functions.

6) Vibrations of a Membrane (Membrane Modes)

Vibrating Membranes: In certain problems in acoustics and mechanical vibrations,
the modes of vibration of a two-dimensional membrane with specific boundary
conditions can be described by solutions to the Hermite differential equation. This
occurs especially when the boundary conditions are related to Cartesian or polar
coordinates, leading to separation of variables and solutions that involve Hermite
polynomials.

7) Astrophysics (Stellar Structure)

Stellar Models: In some models of stellar structure, Hermite polynomials are used
in the solution of stellar equilibrium equations. For example, certain approximations
in the radiative transfer equations for stars may involve solutions that include
Hermite polynomials, especially when approximating the behavior of radiation in
stellar interiors.

8) Acoustics (Vibrations in Cylindrical or Spherical Domains)

5.9

Acoustic Wave Equations: In problems involving the propagation of sound or waves
in cylindrical or spherical domains (e.g., sound propagation in a cylindrical tube or in
spherical cavities), the solutions can involve Hermite polynomials. These solutions
appear when solving the acoustic wave equation in such geometries, especially under
conditions that lead to Gaussian-like profiles.

SUMMARY:

The Hermite differential equation is fundamental in various physical fields, with Hermite

polynomials appearing in numerous contexts, such as:

Quantum mechanics (Harmonic Oscillator Wavefunctions),
Optics (Gaussian Beams and Hermite-Gaussian Modes),
Heat conduction (Fourier Expansions),

Statistical mechanics (Gaussian Distributions),
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o Electromagnetic wave propagation (Waveguides and Optical Fibers),
e Acoustics (Membrane Vibrations),
e Astrophysics (Stellar Models).

These applications demonstrate the wide-reaching significance of Hermite polynomials in
describing physical phenomena that involve Gaussian-like behavior, radial symmetry, or
quantum states.

The Hermite differential equation is a second-order linear differential equation of the form:

d*y dy
————2x——+2ny =0

where n is a non-negative integer, and y(x)is the unknown function. The solutions to this
equation are the Hermite polynomialsH,, (x) which are important in many areas of physics
and mathematics.

510 KEY FEATURES:

1) General Solution:

o For integer n, the solutions are Hermite polynomialsH,, (x), which are
polynomials of degree n.

o For non-integer n, the solutions involve generalized Hermite functions,
often expressed as power series.

2) Orthogonality:

o Hermite polynomials are orthogonal with respect to the weight function
e *over the entire real line. This orthogonality property makes them
useful in solving problems that involve Gaussian distributions, such as in
quantum mechanics and statistical mechanics.

3) Recurrence Relations:

o Hermite polynomials satisfy a recurrence relation, which allows for the
construction of higher-order polynomials from lower-order ones

0 H(n+1)(x) = ZXHn(x) - 2nH(n—l)(x)
4) Asymptotic Behavior:

o For large xxx, Hermite polynomials grow rapidly. Their behavior is
important in the approximation of functions, especially in the context of
asymptotic expansions.
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5.11

5.12

SELF-ASSESSMENT QUESTIONS:

1) Explain about Hermite polynomials?
2) Briefly explain about Recurrence relations?

3) Explain about Rodrigues formula?
SUGGESTED READINGS:

Here are some recommended reference books for studying the Hermite differential
equation and its applications in various fields of physics and mathematics:

1) *“Mathematical Methods for Physicists” by George B. Arfken and Hans J.
Weber

e This comprehensive book provides a solid treatment of special functions,
including the Hermite differential equation. It covers the theory of Hermite
polynomials, their properties, and their applications in physics, especially in
quantum mechanics and optics.

2) “Mathematics for Physicists” by Peter S. McGrath

e McGrath’s book offers a practical approach to solving differential equations
encountered in physics, including Hermite differential equations. It also
discusses their physical significance and how they relate to quantum
mechanics and statistical mechanics.

3) “Methods of Mathematical Physics” by Richard Courant and David Hilbert

e A classic reference on mathematical methods, this two-volume work covers a
wide range of topics, including special functions like Hermite polynomials. It
provides rigorous mathematical treatments and physical interpretations of
these solutions in various contexts.

Prof. Ch. Linga Raju



LESSON-6
LAGUERRE DIFFERENTIAL EQUATION

6.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Laguerre differential
equation. The chapter began with understanding of The Power series Solutions, Generating
Functions, Rodrigue’s formula, Recurrence Relations, Orthogonal Properties Physical
Application. After completing this chapter, the student will understand the complete idea
about Laguerre Differential Equation.

STRUCTURE:

6.1 Introduction

6.2  The Power Series Solution

6.3  Generating Function of Laguerre Differential Equations
6.4  Rodrigue’s Formula for Laguerre Differential Equations
6.5  Recurrence Relations for Laguerre Differential Equations
6.6  Orthogonal Properties of Laguerre Differential Equations
6.7  Physical Applications

6.8  Summary

6.9 Key Terms

6.10 Self Assessment Questions

6.11 Suggested Readings

6.1 INTRODUCTION:

There are very many particular differential equations which find all important place in the
scientific applications. Laguerre’s second order differential equation with variable
coefficients is one such. Particular attention may be drawn to the radial wave equation in
quantum mechanics isomorphous with the differential equation in mathematics whose
solutions are associated Laguerre functions. But stress is given in this lesson to only Laguerre
Polynomials.

6.2 SOLUTION OF LAGUERRE’S DIFFERENTIAL EQUATION:
Laguerre’s differential equation may be written as

xy" +(1-x)y + Ay =0, where . = constant ~ ------------ 1)
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This equation has a singularity at x = 0. But the singularity is non-essential or removable and
hence the method of series integration is allowed by Fusch’s theorem for solving this

“*I' (where k is constant and ag= 0) as the

equation. For this purpose, we takey = an,x
solution of given differential equation.

Thusy' = 2 (k +1) ax *'"tandy’ = S(k+1) (k+1-1) ax <t

Substituting these values in equation (1), we have

le(k_l_I)ZaIXk+|—1_ZI:a1(k+I_;\‘)Xk+|EO _________ (2)

This equation is true for all the values of x and hence the coefficients of all the powers of x

are identically zero. As such equating to zero the coefficient of the lowest power of x, i.e., of

x*~1 we have the indicial equation as

Ka=0 e 3)

since ap= 0; so equation (2) holds good only if k = 0. Then, we have

sPax't-zal-1m)x'=0 s (4)
Equating the coefficients of X to zero, we have aj.1 = (Jj—lj;z aj.
+
This is the recurrence relation for the coefficients.
Thus a = —Aap = (1) ay,
1-4 A(A-1 A(A-1 A(A-1
a = ; (—kao): ( - ) a = ( 2) a :(_1)2 ( 2)
2 2 (21 (21
2-1 AA-D(A-2 AA-D(A-2
gz 27 g =MD 40 AA-D022)
3 (3 3N
r-1-1 AA=-D...A-r+1
ar = = a,, =" (=D )a

(> >
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Soy= I%a,x' :a{l—lx+ﬂ“(l_l) 2 1)’ l(l_l)”'(ﬂ“_Hl)x' +}

@y —or D (>

If L = n, a positive integer, and if, we put ap = n !, (some authors may take a, = 1) then the

solution for y contains only (n + 1) terms and becomes the Laguerre Polynomial of degree n.

Thus (5) becomes Ly(x) = %Mx*

= [n-r( )
2 200 12
= (<1)?2| x" —”Tx“-1 +%x“-2 TR\ LI —— 6)

This is the expression for Laguerre’s Polynomial.

Equation (6) gives Lo(0) = n !, Lo(X) = 1, Ly(X) = 1 — X, La(X) = X*— 4x + 2,
La(x) = x3 + 9x*— 36x + 6, La(X) = x*— 16x° + 72x°— 96x + 48, and s0 on.
Thus a Laguerre’s polynomial is the solution of equation

XLy (X) + (1 -X)L/(X) +nLa(X) =0 s )
6.3 GENERATING FUNCTION OF LAGUERRE POLYNOMIAL.:

Lo =R 7L ()

Solution:

1 otx 1 =) 2y =
Let —ei-t = (1—_t) [1+{11—!f}+%+ ......... %+ .......... ]

:( 1) o (CDTET

1-t r=0 r!

(1 o DX g (DTN

_(1_—t) =0 ri(1—gr ~ “T=0p(1-pr+1

:Zﬁozo (G (1 _ t)—(r+1)

r!
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n(n+1)(n+2) X3 +

(L-x)"=1+nx+20 D24
2! 3!

1= Z—( 1irxrr[1+t(r+1) —(r+1;§r+2)t2+

+(r+1)(r+2|)....(r+s)
s!

t5+...]

Z (1)r " oo (r+s)!tS

r! =0 pig1

:ZOO (-1)Tx"(r+s)! tr+s

(rh2s!

Now by fixing the value s=n-r. Then the coefficient of t"
i (=1)rxn!
£ (r2(n—n)!
s>0
n-r>0

n>0

r<n

= (O (=1)'xTnl

s Z (rM2(n—r)!
1 —tx >

1—¢ et = (Z t”Ln(x)>

n=0

6.4 RODRIGUE FORMULA FOR LAGUERRE DIFFERENTIAL EQUATION:

Differentiating generating function equation (18) n times w.r.t.p, we have

X ap [ p) e @ | = Lo(x) + Lyea(X) p o+ vrs oo (22)
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since all terms up to the term containing p"~* vanish when differentiated n times.

0 o 1-X-p _xi@p
But —|a-p) et | == Z ¢ P
op | | (1-p)’
Lim
So 2 [a-p)te*/ @] = (1 -x)e™* = 9 xe.
p—00dp dx
. Lim 5?2 d?
Similarly, 1-p)te™@” | = = _(x*e™) and soon.
ypﬁoapz[( P) ] L)

an
0 9p"

Lim n
Thus finally, we have [(1— p)te™ ‘1"°)] = d—n (x"e™)
o - dx

And hence equation (22) for p— 0 gives
X dn n o—Xx
Li(¥)=¢*—'e?) e (23)
dx

Which is Rodrigue’s representation of Laguerre’s polynomial.

The Rodrigue’s; representation of associated Laguerre’s polynomial is given by

n

LI; (X) — eX X—k;7 ( e—XXn + k) __________ (24)

6.5 RECURRENCE RELATIONS:

1) (0 + DLpys (6) = @0+ 1 = X)Ly (x) = nly, (%)
2) XLy (x) = Ly (x) — 1Ly, (x)

3) Ly () = —S12E Ly ()

First recurrence relation:

(Tl + 1)Ln+1(x) = (211 +1-— x)Ln(x) - nLn_l(x)
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From the generating function of Laguerre polynomial

[ee]

1 -
1—¢ et = Z t"L,(x)

n=0

Differentiate with respect to‘t” on both sides

[ee]

n-1 _ 1 =[(1-0-t(=1) —ex 1
Znt Ln(x) = 1_tel‘t[ 1—0)? —x+ei-t @EhE

n=0

—tx —tx

X -1 —tx

—-—e1-t X =+ ei-t
1-t (1-t)2  (1-t)2

[ee]

(1 - 1)? Z "1, (%)

n=0

[ee]

= —xz t" L (x) + (—t) ; tnLn(x);nt"‘an(x) +t2 Z 7Ly (x)

n=0 n=0

[ee]

-2t Z nt™" 1L, (x)

n=0

=—x Yo MLy () + 2o t™ Ly (x) — X nt™ 1L, (%)
Comparing the coefficient of t™ on both sides
(n+ 1) Lyy1(x) + (n=1)L,,_, (x) — 2nLy(x) = —xLy,(x) + L (x) — Ly,_, (x)
(n+ 1)Lpyq(x) = @n+ 1)Ly (x) — xLp(x) — nly_, (x)
(n+ 1)Ly (x) = Cn+1-x)L,(x) — nL,_ (x)
Second recurrence relation:
xLy (x) = nL,(x) —nL,, (x)

From the generating function of Laguerre polynomial
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1 - -
1—¢ ei-t = Z t"L,(x)
n=0

Derivative with respect to ‘X’ on both sides

[ee]

1 —tx / —t ,
1—¢°7" (1 — t) - Z L (x)

n=0

[ee]

= i L) = Y ML)
n=0

n=0

(1-1v) i t"L,(x) = —ti t™L,(x)
n=0 n=0

i t" Ly (x) — i LML (x) = — i "Ly (x)
n=0 n=0 n=0
Comparing the coefficient t™ on both sides

Ly (x) = Ly (x) = —Ly—4(x)

Lyn(x) = Ly 1 (x) = Lp-1(x)

Replace ‘n’ by n+1 in equation 1 then

L1 (x) = Ly (x) — L (%)

Consider recurrence relation 1

(Tl + 1)Ln+1(x) = (211 +1- x)Ln(x) - nLn_l(x)

Derivative above equation with respect to ‘X’

(n+DL,,,(x)=Cn+1—-x)L,(x) — xL,(x) — L,(x) — nL,_;(x)

Sub L, (x) and L) ,, (x) in above equation then

(n+ ){L,(x) = L,(x)} = @2n + 1){L;,_, (x) — Lp—1 (x)} — (x)L;,(x) — L, (x)nLi,_1(x)
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nLy (x) + Ly (x) — nly (x) — Ly, (x)
=2nLy_1(x) + L}_1(x) = 2nL,_; (x)—Ly—q (x) — xL3, (x) — L, (x)
- nL’n—l(x)

xLy (x) = nL,(x) — nL,, (x)

Third recurrence relation:
n—1
L) == L ()
r=0

From the generating function

1 -« -
16 = Z t"L,(x)

Differentiate with respect to ‘x’

[ee]

, 1 -ty —t
Z tnLn(x) = - te1—t (1 — t)
n=0
_t )

() T L)
= — 7‘2020 tT+1LT(x) (1 _ t)_l
=— 30 ot L {1+ttt S+ ]
= 3 L () T £
= = Xls=ot" L (%)

Z "L (x) = — Z tTHIHS L (x)

n=0 r,5=0

Let r+s+1=n

S=n-r-1
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$>=0
n-r-1>=0
n-1>r

[e'e] n—-1
PO EER LN
n=0 r=0

Comparing the coefficient of t™ on both sides
n—-1

L) == L)
r=0

6.6 ORTHOGONAL PROPERTIES OF LAGUERRE POLYNOMIALS:

Laguerre’s differential equation is not self*adjoint and thus Laguerre’s polynomials Ln(X) do

not by themselves form an orthogonal set.

However, the related set of functions

R (25)

2

where e is the weight function of Ly(x) is orthogonal for the interval 0 < x <, i.e.,

I N T M —— (26)
m! nt

It can be proved as follows:
We know that Ln(x) = e";l—n(xn e™). Multiplying both sides with e”™x™ and integrating
X

w.r.t. X between the limits 0 to «, we get

dn
dx"

J : e X" Ln(X) dx = J : x ™ (x" e™)dx
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n-1
— (X" e™)dx = (-1)m j X" 1:x”'1 (X" e™)dx

{md
= X

}J'mxl

= (-1’ m(m-1) j:xm 2d — (xn €)X = oo
= (-1)’m J'O v (x e™)dx (on integrating by parts)
=0ifn>m.

similarly, | :’ e”X™Ln(X) dx = 0 if m > n.
But Ly(x) is a polynomial of degree n in x and Ly (x) is a polynomial of degree min x.

Therefore, J' io e Lm(X) Ln(x) dx =0 for m>nand for m < n

or [ LA T p— 27)
—o0 m! nl

Form=n, j“; e {La(X)¥ dx = (-1)" j e X" La(X) dx
(since the term of degree n in Ln(x) is(-1)" x").
ThusJ. e {Ln(X)} dx = (-1)" j e X" ¥ (x e™)dx

=(-1)"n! j: x"(-1)"e¥dx =n! j: x"eXdx=(n1)? --emeeme- (28) or

—x/2

["= e L. Ln(X) dx = 1
o nt

Thus from equations (27) and (28), we get

J‘°° o2 L, (X) o2 L, (x)

d —6m n
m! n!
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J, m() 4a() dx = 8

L0 L0 s
[m n

Second method: To prove that J': e

t"L,x) 1 X
[n 1-t

Proof: We have %

0 L -SX
and ¥ s"—m 6 _ 1 els
m=0 [m 1-s
Further,
o -tx -SX
3 e—xtnsm Ln (X) Lm (X) — e—x 1 1 eft . eg
m,n=0 I_n I_m 1 — t 1 —-S

Integrating both sides w.r.t. x between the limits O to «, we can have a typical integral

o L L - ; i
J‘O o X In(X) _ Im(x) dx = coefficient of t"s™ in the expansion of
n m

-tx -SX
1

Jme‘x— elt els  dx
0 @-1)(1-s)

-tx -SX t s

elt gls _ Jm e'x{l+ﬁ+ﬁ}. dx
0

ButJm e"‘—l =
0 @-1)(1-9) @-1)(1-9)

_ 1 _X{1+L+i} N
= . |:e -t 1-s :|
(l—t)(l-s)[1+ t S } 1o

1-t 1-s

1 1 2
= 0-1)=——=[1+ts+(s)" +.......
—1+ts( ) 1+ts [ (ts) ]

Here the coefficient of t"s™ is zero (m = n) and 1 for m=n.
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“Jo

6.7

- J.OO e—X Ln(X) Lm(X) dX:Smn

InIm

PHYSICAL APPLICATIONS:

Laguerre differential equations have various applications in physics, particularly in areas
involving quantum mechanics, optics, and wave phenomena. Some of the most prominent
physical applications are:

1. Quantum Mechanics:

Radial Wavefunction in Hydrogen-like Atoms: In the Schrédinger equation for the
hydrogen atom (or hydrogen-like atoms), the radial part of the wavefunction satisfies
the Laguerre differential equation. When solving for the energy eigenfunctions, we
often encounter associated Laguerre polynomials. These polynomials appear in the
radial wavefunctions Rnl(r)R_{nl}(r)Rnl(r) for the hydrogen atom and other systems
with central potentials.

The general form of the radial part of the wavefunction is derived from the Laguerre
differential equation and is written in terms of associated Laguerre polynomials
Ln((x)L_n*{(D}(x)Ln(l)(x). These polynomials represent the quantum states of an
electron in an atom, especially for discrete energy levels.

2. Optics:

Laguerre-Gaussian Beams: Laguerre polynomials appear in the description of laser
beams with vortex-like properties, known as Laguerre-Gaussian beams. These beams
are solutions to the Helmholtz equation and are used in optical systems that
manipulate light in terms of its angular momentum. The intensity distribution of such
beams can be expressed in terms of Laguerre polynomials, and they have applications
in optical trapping, micromanipulation, and quantum optics.

3. Radial Vibrations and Waveguides:

Vibrations of Circular Membranes: For circular membranes (such as those in
drumheads or membranes in acoustics), the solutions to the wave equation can
involve Laguerre functions. The modes of vibration for such membranes can be
described by functions that include associated Laguerre polynomials in the radial
direction, especially in systems with circular symmetry.

Waveguides and Optical Fibers: In waveguide theory, particularly in the context of
optical fibers, the radial modes of light propagation can be described by the Laguerre
differential equation. Solutions often involve Laguerre polynomials that describe the
spatial variation of the modes in the radial direction.
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4. Hydrodynamics:

e Flow Problems in Cylindrical Coordinates: In fluid dynamics, certain cylindrical
flow problems, such as those involving vortex motion or flow in cylindrical pipes, can
lead to differential equations that involve Laguerre functions. These functions help in
solving flow problems with specific boundary conditions, such as those found in
fluid-filled tubes or rotating systems.

5. Electrostatics:

o Potential Theory: In electrostatics, solutions to Laplace's equation in cylindrical
coordinates (with specific boundary conditions) can involve Laguerre polynomials.
These solutions are useful for systems with cylindrical symmetry, such as in the
analysis of electric fields within coaxial cables or cylindrical conductors.

6. Nuclear Physics:

e Wave functions for Nuclear Potentials: In the study of nuclear potentials, the radial
solutions to the Schrddinger equation often involve Laguerre polynomials. These
solutions describe the behavior of nucleons within a nucleus, especially when
approximating the behavior of particles under certain potential models.

These applications highlight the versatility of Laguerre differential equations in physical
problems that exhibit cylindrical symmetry or involve systems with quantized states, such as
in quantum mechanics and wave theory.

6.8 SUMMARY:

The Laguerre differential equation is a second-order linear differential equation of the
form:

d’y dy

In? x+(b—x)a+ay20
where a and b are constants, and y(x) is the unknown function. It is a special case of the
general class of generalized Laguerre equations and has important mathematical and

physical applications.
6.9 KEY TERMS:

1) Solution Structure: The solutions to the Laguerre differential equation are given

by the Laguerre polynomials Lgla)(x)for integer values of nnn, which are a
family of orthogonal polynomials. For non-integer values of nnn, the solutions
involve generalized Laguerre functions.
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2) Orthogonality: The Laguerre polynomials L;@(x) are orthogonal with respect to
the weight function e™ on the interval (0,00). This orthogonality property is
crucial for their use in various physical applications, such as quantum mechanics
and optics.

6.10 SELF ASSESSMENT QUESTIONS:

1) Explain about the power series solution of Laguerre differential equations?
2) Explain about Rodrigues formula for laguerre polynomial?

3) Briefly explain about Orthogonal properties of laguerre polynomial?
6.11 SUGGESTED READINGS:

Here are some standard reference books that cover Laguerre differential equations and
their applications in various fields:

1) *“Mathematical Methods for Physicists” by George B. Arfken and Hans J.
Weber

e This comprehensive book provides an extensive treatment of various
mathematical techniques used in physics, including a detailed section on
special functions like Laguerre polynomials. It explains their derivation,
properties, and applications in quantum mechanics and other areas of physics.

2) “Mathematics for Physics and Physicists” by Peter S. McGrath

e McGrath’s book includes sections on solving differential equations commonly
encountered in physics, including the Laguerre differential equation. It
focuses on practical applications and solving techniques, making it useful for
physicists.

3) “Methods of Mathematical Physics” by Richard Courant and David Hilbert

e A classical reference for mathematical methods in physics, this two-volume
work discusses special functions and differential equations in depth. It
includes sections on Laguerre polynomials and their applications in solving
physical problems.

Prof. Ch. Linga Raju



LESSON-7
INTEGRAL TRANSFORMS

7.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Integral Transform. The
chapter began with understanding of Laplace Transforms-definitions-Properties, Derivative
of Laplace transform of a derivative, Laplace transform of periodic function, evaluation of
Laplace transform. After completing this chapter, the student will understand the complete
idea about Integral Transform.

STRUCTURE:

7.1  Introduction

7.2 Laplace Transform Definition

7.3 Laplace Transform Properties

7.4 Derivative of Laplace Transform

7.5  Laplace Transform of a Derivative

7.6 Laplace Transform of Periodic Function

7.7  Evaluation of Laplace Transforms

7.8  Summary

7.9 Key Terms

7.10 Self Assessments Questions

7.11 Suggested Readings

7.1 INTRODUCTION:

The integral transform f(s) of a function F(t) is defined as
f(s) =I{f(®)
= [ k(s, O)F (t)de

Where k(s, t) is Kernel Transform and ‘s’ is a parameter real or variable.
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Depending upon the type of Kernel transform and range of integration different types of

integral transforms are obtained.

1) k(s,t) = e 5t then

f(s) = [ e st F(t)dt
This is known as Laplace Transform

2) k(s,t) =t],(s, t) then
f(s) = j (s, OF (©)dt
0

This is known as Hankel Transform (Fourier Bessel’s transform)
Here J,,(s, t) is Bessel’s function of order x
3) k(s,t) =t then
f(s) = [ ts"LF(e)de
This is known as Mellin transform
4) k(s,t) = e~*t then
f(s) = [, e~st F(¢)dt is known as Fourier transform
5) k(s,t) = Cosst
f(s) = fow CosstF(t)dt is known as Fourier Cosine Transform
6) k(s,t) = Sinst

f(s) = fow SinstF (t)dt is known as Fourier Sine Transform

7.2 DEFINITION OF LAPLACE TRANSFORM:

If F(t) be a function of t defined by all positive values i.e, t=0 then the Laplace Transform of
F(t) is denoted by L{f(t)} or f(s) is defined by the expression

0

LEF@)} = £(s) = j et F(t)dt

0

If the fow e StF(t)dt converges for some values of s then the L{F (t)} is said to exist

otherwise it does not exist
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7.3  PROPERTIES OF LAPLACE TRANSFORM:
1) Linear property:

If c,andc,are any constants and f;(s),f,(s) are Laplace transform of F,(t),F,(t)

respectively then according to Linear property
L{c F,(t) + ¢, F, ()} = ¢, L{F1 (£)} + ¢, L{F,(t)}

= ¢1f1(8) + 2 f2(s)
Proof:

Since f;(s), f,(s) are Laplace transform ofF; (t), F,(t) respectively then

£(s) = LEF (0} = j e~5tF, (£)dt
0

£(s) = LR 0} = j e~StF, (8)dt
0

L.H.S=L{c,F, ()} + c,{F,(t)}
= Jy e e Fi ()} + c{F,(0)}dt
= ¢y J, e StF(t)dt +c, [, e StFy(t)dt
= c1/1(8) + c2f2(s)
=R.H.S

Hence proved

2) Shifting or Translation Property:

a) First shifting property
b) Second shifting property

a) First shifting property:
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If f(s) be the Laplace transform of F(t) then
L{e®F(O)} = f(s —a)
Proof:

Since f(s) is Laplace transform of F(t) then
F) = LF@Y = [ etr(oat
0
L{eF(8)} = j Cemsteatp()dt
0

= j et (F(t)dt
0

Let (s-a) be p
L{eaF ()} = j T (R (r)de
0

= f(p)
=f(s—a)

L{e*F(O)}= f(s—a)
b) Second shifting property:

If f(s) is Laplace Transform of F(t) and another function G(t) which is defined as

F(t—a)fort>a

fort < athen

Gt = {o

L{G(t)} = e *f(s)
Proof:

Since f(s) is Laplace Transform of F(t)

£(s) = L{F(£)} = j e~SUF(t)dt
0
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L{G(6)} = j Ce=tG(e)dt
0

LG = =Stg(t)d ) =Stg(t)d
GO} joe (t)t+jae (©)dt

= [ e~st(0)dt + [ e StF(t — a)dt
Let (t —a) =x

t=x+a

dt = dx
L{G(0)} = j =Gt a) P () dc
0

=eas fow e S*F(x)dx
LG} = e™*f(s)
3) Change of scalar property:
If f(s) is Laplace transform of F(t) then
U@} = - f>
Proof:

Since f(s) is Laplace Transform of F (t)

£(s) = L{F(£)} = j e~SUF(t)d
0

LIF(6)} = j Cemstp(at)de
0

Letatx=dx=d—x

a



Centre for Distance Education

7.6

Acharya Nagarjuna University

X
t==
a

© o x dx
L{F(at)} = j DR ()
0
L{F(at)} = % j T O p () dx
0
LF@ = £O)

Problems:

1. Find the Laplace transform of the following function

)F(t) = 1ii)F(t) = tiii)F(t) = t"
We know that

£(s) = LF(D} = j Ce-str(0)dt
0
DA} = [ e-tdr

=1,

@} ==

S

i) L{(0)} = [ e~stdt

e—St ®© 1 0
= + = —st
[t ]0 sfo e st 1.dt

=S

1 [e—st]00
- N =S 1y
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i) L{t"} = [“estendt

e St 0 0
= [{t”} l —j e Stnt"1dt
0 0

)
0 0
n
l +—j e st dt
o Yo

_nfne1e”)" L nm1 o ino2
=3 t 5 +T o € t dt
- 40

e~St
—S

= [{t”}

n(n-1)
Sn

J‘w e~Sten—2¢t
0

n(n-1)(n-2).....3.2.1

- © —st4+0
= pon J, e~*ttldt
_ n'l
T sts
n!
I{t"} = o
n! Vn+1
L{tn} = n+1 = Sn+1

2) L{e"'} =? find tha laplace transform

f®)=LHWO}=Jme*UKOdt
0
L{edt} = 00—statd
{e%t} joe edtdt

= [ et
0

[ e~ ts—a) ®

~-a),
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L{e} =
s—a
1

L —at\ —
{e~2t} v a

7.4  DERIVATIVE OF LAPLACE TRANSFORM:

If £(s) is Laplace Transform of a function F(t) then
Df'(s) = (=1)L{tF(t)}

i) '(s) = (-1)2L{t*F ()}

ti)f"(s) = (-1)L{?F ()}

w)fm(s) = (=1)"L{t"F ()}

Proof:

i) sincef (s)isaL.TofF(t)

£(s) = j et F(t)dt
0
Differentiate on both sides with respect to ‘s’

d *d
SUO =] fesrow

0

£(s) = j e~ (—t)F (t)dt
0

=(-1) jwe‘Sf(t)F(t)dt
0
f'(s) = (=1)L{tF(t)}

£(s) = j et F(t)dt
0

Differentiate on both sides with respect to ‘s’
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d “d st
A = j e E()dt
£(s) = j e~ (—t)F (t)dt

0

=(-1) jwe‘Sf(t)F(t)dt
0

Again differentiate the above equation

f(s)= (—1)j %(e‘“)tF(t)dt
0

£1(s) = (=1)2 j CemteR () dt
0
f'(s) = (—D2L{t?F(t)}  ........ (3)
iif) f(s) = j Tt E(O)dr
0
Differentiate equation (3) with respect to‘s’ on both sides
d " — 2 " d =St +2
G ©=C0H[ geterm)

£ = 02| e (0er)
0

£(s) = (-1)3 {jwe‘“ t3F(t)} dt
0

fr(s) = (-1)°L{t*F(6)}
Similarly
fr(s) = (=D "L{t"F(£)}

7.5 LAPLACE TRANSFORM OF DERIVATIVES:

If £(s) is Laplace Transform of a function F(t) then



\ Centre for Distance Education 7.10 Acharya Nagarjuna University

i) L{F' ()} = sf(s) — F(0)

i) L{F"(£)} = s?£(s) — sF(0) — F'(0)

iii) L{F(£)} = s3f (s) — s2F(0) — sF'(0) — F"(0)

iv) LEF(£)} = s™£(s) — s""1£(0) ..... —sF"~2(0) — F"~1(0)
Proof:

i) Sincef (s) isa L{F(t)}

f(s) =L{F@t)} = j we‘StF(t)dt
0
L{F1(¢)} = j we‘StF'(t)dt
0
= [e=tF(R)]7 — j C(Cs)etF()dt
0

LIFY(6)} = —F(0) + s j TemstE(t)dt
0

= —F(0) +sf(s)

L{F1(0)} = sf(s) — F(0)

if) LEF"(£)} = j CemstE () de
0

= [e=StF1(6)]% — j (=s)e~StF (t)dt
0

=—F'(0) +s J, e stF'(t)dt

= —F'(0) + s(sf(s) — F(0))

= —F'(0) + s2f(s) — sF(0))
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L{F (1)} = s*f(s) — sF(0) — F(0)

iif) LEF"(£)} = j TSR0yt
0

= [e=StF1(6)]% — j (=s)e~StF"(t)dt
0

= —F'(0) + s[s*f(s) — sF(0) — F'(0))
L{F"(t)} = s3f(s) — s2F(0) — sF'(0) — F"(0)
Similarly

iv) L{F™(t)} = s"f(s) —s"1f(0) ..... —sF""2(0) — F"~*(0)
7.5 LAPLACE TRANSFORM OF PERIODIC FUNCTION:

If F(t) is a periodic function with a period ‘T” and F(t + nT) = F(T)where

n=0123..... then

1

LFO) = j et (t)de
0

1 -

Proof:

Since f(s) is a Laplace Transform of F(t)

L{F(6)} = j CemstE(e)dt
0

T 2T (n+1)T
= je‘StF(t)dt+j e StE(t)dt + ---+ j e StE(t)dt + ---.
0 T nT

w (M+1)T

:ZJ e SLF(t)dt

n=0 nr
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Let t=x+nT
dt=dx

L{F(t)} = L{F (x + nT)}

n=0

WFGe+nD)} =y j e~SEHD E (x + nT))dx
0

L{F(x)} = i fe‘s(“”T)F(x))dx

n=0

T

e‘sntje‘sxF(x))dx

0 0

NgE

n

L{IF(x)}=Q+e ST + e 2T 4 73T + )j e S*F(x))dx
0

L{IF(x)}=(Q—-esT)1 j e S*F(x))dx
0

L{F(x)} = ﬁfg e ~S*tF (x)dx for periodic function
T

LFO) = g j et (t)de

0

1.7 EVALUATION OF LAPLACE TRANSFORMS:

The evaluation of Laplace transforms involves transforming a given time-domain function
(typically a function of t, denoted as f(t) into a complex frequency-domain function (denoted

as F(s), where s is a complex variable.

The Laplace transform of a function f(t) is defined as:
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FGS) = U@} = [ f@ye e
0

where:
e tisthe time variable (typically t>0),
e sisacomplex number s=c+i® (where ¢ and o are real numbers),
o f(t) is the original time-domain function.
Basic Laplace Transforms:
Here are a few standard Laplace transforms for commonly encountered functions:

1) Constant Function:
L(1) = %, forR(s)>0
2) Exponential Function:

L(e®) = S% forR(s)> a

a1
3) Sine Function:

1

s24q2’

L(sin (at)) = forR(s)>0

4) Cosine Function:
L(cos(at)) = # forR(s)>0

a?'’

5) Power Function (t"):

L(tm) = 2 forR(s)>0

snt1

6) Unit Step Function ( Heaviside Function ):

L(u(t - 2)) = == forR(s)> 0
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where u(t—a) is the Heaviside step function, which is O for t<a and 1 for t>a.
7) Delta Function (Dirac Delta Function):
L(3(t—a)) =e % foranys
Evaluation Process:
To evaluate the Laplace transform of a function f(t), follow these steps:

1. Express f(t) in a form that matches known transforms or can be simplified to match a

known form.

2. Use standard Laplace transform formulas (like those listed above) to find the

Laplace transform of each term.
3. For more complex functions, you might need to apply the following techniques:
o Linearity: If f(t) = fiy(t)+f,(t)thenL{f (t)} = L{fi (O)}+L{f, (t)}
o Shifting in time: If f(t) = e% g(t),thenl{e* g(t)} = F(s — a)
o Convolution: If f(t) = g(t) * h(t)thenL{f (t)} = L{g(¢)}. L{h(t)}

4. If necessary, simplify the result in terms of s, and solve for the desired function in

the s-domain.
Example: Evaluate the Laplace transform of f(t) = te?!

Let's evaluate the Laplace transform of f(t) = te?!:

1. Identify the form: We know that the Laplace transform of et is ﬁ and the Laplace

n!
gn+1

transform of t™ is

2. Use the shifting property: Since we have both t and et we can apply the d=formula

for the Laplace Transform of t.e2t. This is given by:
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1
L{te} = —
{te®} G-a)?
3. Plug in the value a=2:
1
L 2t —
{te?t} G2
Thus, the Laplace transform of te?is o

7.8  SUMMARY:

Integral Transforms are mathematical tools that convert functions from one domain into
another, often simplifying the process of solving equations, especially differential equations.
They work by integrating the original function with a kernel function, transforming it into a
new function in a different domain.

The integral transform f(s) of a function F(t) is defined as

General form of Integral Transform:
f(s) = Kf ()}
= [ k(s, O)F (t)de

Where k(s,t) is Kernel Transform and ‘s’ is a parameter real or variable.

7.9 KEY TERMS:
1) Kernel Function — The core function K(s,t) used in the transform.
2) Transformation — Converting a function from one domain to another.
3) Inverse Transform — Process of converting back to the original domain.
4) Integral — Integration is the main operation in integral transforms.
5) Domain — The original and transformed domains (e.g., time and frequency).
6) Convergence — Conditions under which the integral exists and converges.
7) Linearity — Property that T{af (t) + bg(t)} = aF(s) + bG(s).

8) Superposition — Solution method using the sum of solutions for linear systems.
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7.10

7.11

9) Differential Equation — Common application of integral transforms.

10) Initial Conditions — Used in transforms like Laplace for solving differential
equations.

SELF ASSESSMENT QUESTIONS:

1) Briefly explain about Laplace Transform of definition and properties?

2) Explain about Laplace Transform of derivatives?

3) Find the Laplace Transform of

1) sinhat  ii) coshat iii) sinat  iv) cosat

SUGGESTED READINGS:
1) *“Schaum's Outline of Laplace Transforms” by Murray R. Spiegel

e Overview: Offers a concise review of Laplace transforms with solved
problems and exercises.

e Why Read: Ideal for quick learning and practice, especially for students
preparing for exams.

2) “Integral Transforms and Their Applications” by Lokenath Debnath and
Dambaru Bhatta

e Overview: Comprehensive coverage of integral transforms, including
Laplace, Fourier, Mellin, and Hankel transforms. It focuses on applications in
engineering, physics, and applied mathematics.

e« Why Read: Excellent for both theory and practical applications, with plenty
of examples and exercises.

3) “The Laplace Transform: Theory and Applications” by Joel L. Schiff

Overview: In-depth exploration of the Laplace transform, including theory,
applications, and computational techniques.

e Why Read: Focused entirely on the Laplace transform, providing detailed
theory and applications in engineering and physics.

Prof. Ch. Linga Raju



LESSON-8
INVERSE LAPLACE TRANSFORMS

8.0 AIMS AND OBJECTIVES:

The primary goal of this chapter is to understand the concept of Inverse Laplace Transform.
The chapter began with understanding of Inverse Laplace Transform properties, evaluation of
inverse Laplace Transform, elementary function method, Partial fraction method, Solution of
ordinary differential equation by using Laplace Transform method. After completing this
chapter, the student will understand the complete idea about Inverse Laplace Transform.

STRUCTURE:

8.1  Introduction

8.2 Properties of Inverse Laplace Transform

8.3  Evaluation of Inverse Laplace Transform

8.4  Elementary Function Method

8.5  Partial Fraction Method

8.6  Solution of Ordinary Differential Equation by using Laplace Transform Method
8.7  Summary

8.8 Key Terms

8.9  Self Assessments Questions

8.10 Suggested Readings

8.1 INTRODUCTION:

If f(s) is a Laplace Transform of a function F(t)i.e L{F (t)} = f(s)then F(t) is called an

inverse laplace transform of f(s) and is denoted by

F(t) = L7H{f (s)}

Where L1 is called Inverse Laplace Transformation operator

fFLHf(s)} = F(t)
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1 t"
gn+1 E

at
Ss—a

e—at

s+a

1 t"
(s —a)rt? -

1 a
or
SZ + a2 SZ + a2
S
————  cosat
s? +a?
a it
sinhat
$2 — g2
> h
coshat
$2 — g2
b ato;
————e%ginat
(s —a)?+ b2
S at
e*cosbt

(s —a)?+ b2

Sinat or

8.2 PROPERTIES OF INVERSE LAPLACE TRANSFORM:

1) Linear Property:

If f;(s)and f,(s) be the Laplace Transform of F,(t)and F,(t) then
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LHei fi(8) + c2£2()} = e LTS ()} + oL H{f2()}
Where c,and c, are constants
Proof:
Since f,(s)and f,(s) are Laplace Transforms of F,(t)and F,(t) then
L{F1 ()} = £1(s)
Fi(6) = L7 £1(s)
And L{F,(8)} = f,(s)

Fo(t) = L7 f,(s)

L{ciFy(8) + pFy (D)} = j e=5t {c, Fy (6) + ¢, Fy(0)}dt
0

[ee]

j et {chl(t)}dt+ j et cze(t)}dt
0

0

e}

= clj e StF, (t)dt + czj e StF,(t)dt
0 0

= aL{F, (D} + ¢, L{F, (1)}
= c1f1(8) + c2f2(s)
{c,F1(6) + c2F, (0} = L1 f1(S) + 2 f2(8)}
1L i(s) + oL f(5) = L7He1 fi(8) + cof2(s)}
L Hei f1(8) + c2fo ()} = e LTHf1 ()} + oL H{f2()}
2 (i) First Shifting Property:

If L=H{f(s)} = F(¢) then
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L™Hf(s —a) = e™F(t)
Proof:

Since f(s) is the Laplace Transform of a function F(t)

f(s) = L{F (D)}

L{e®F(t)} = j e Ste® F(t)dt
0

= j et FE(t)dt
0

L{e™F ()} = f(s —a)

Applying inverse Laplace Transform on both sides
{e“F(O)}= L"Hf(s — a)}

il) Second shifting property:

If f(s) is Laplace Transform of F(t) then
L~He™f(s)} = G(¢)

F(t—a), t>a
0, t<O

Where G(t) = {
Proof:

Since f(s) is Laplace Transform of F(t) i.e
L{F(©)} = f(s)

Now L{G(0)} = [;” e~*tG()dt

a e}

=je‘StG(t)dt+j e StG(t)dt

0 a
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[ee]

=0+ j e StFE(t — a)dt

a
Let t-a=x

dt=dx
L{G(6)} = j e~S(a+ ) F (%) dx

=egas faoo e S*F(x) dx

= e~ f(s)
G(t) = L e *f(s)}
3) Change of scalar property:

If L=H{f(s)} = F(¢) then

L (as)} = FO)
Proof:

By the definition of Laplace Transform

[ee]

£(s) = j e~ F () dt

a

e}

fas) = j e~0StE(¢) dt

a

Letat=x;dt=%x

e}

f(as) = j e SXF (5)%

a’ a
0
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L (as)} = FO)

8.3 EVALUATION OF INVERSE LAPLACE TRANSFORM:

Evaluating the inverse Laplace transform involves finding the original time-domain

function f(t) from its Laplace transform F(s). Here's how to approach it:
Methods to Evaluate Inverse Laplace Transform:
1) Using Laplace Transform Tables

Most inverse Laplace problems are solved by matching the given F(s) with known Laplace

transform pairs.

Common Laplace pairs:

f(t) F(s)L{f ()}
1 1
s
nl
tn Sn+1
eat 1
s—a
. b
s
cos (bt) m
e?sin (bt) b
(s —a)? + b2
e?tcos (bt) s—a
(s —a)? + b2
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2) Partial Fraction Decomposition

For rational functions where F(s) = % decompose into simpler fractions.

Example:

3s+1
(s+1)(s+2)

F(s) =

3) Using Shift Theorems

First Shifting Theorem (s-domain shift):

If L71{f(s)} = F(t) then
L{f(s —a) = e™F(t)

Second Shifting Theorem (time shift):

If f(s) is Laplace Transform of F(t) then

L7{e™®f(s)} = G(v)

F(t—a), t>a

Where G(t) = {O r<0

84 ELEMENTARY FUNCTION METHOD:

The Elementary Function Method for inverse Laplace transforms involves using basic
algebraic manipulation and known Laplace transform pairs to find the inverse transform

without resorting to complex methods like contour integration or the Bromwich integral.
Here’s a step-by-step guide to this method:
Step 1: Identify Standard Laplace Pairs

Use standard Laplace transform pairs, such as:
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F(s) f(®
1

- 1
S

1

5_2 t

1 gat
S—a
1 sin(wt)

s?+w? w

1
m cos (wt)

n!

n
STL+1 t

Step 2: Decompose the Function

If the given Laplace transform is a rational function (a ratio of polynomials), decompose it
into simpler parts using partial fraction decomposition.

Example:

3s+5

F(S):sz+4s+5

Complete the square in the denominator:
s2+4s+5=(s+2)2+1

Rewriting the numerator:
3s+5=3(s+2)-1
Split the transform:

s+2 1
(s+2)2+1 s+2)2+1

F(s)=3

Using standard pairs, the inverse is:

f(t) = 3e 2t cos(t) — e~2tsin (1)
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Step 3: Apply Laplace Shift Theorem

The first shifting theorem states:

If L={f(s)} = F(¢) then

L Hf(s —a) = e®F(t)

Step 4: Use Known Inverse Transforms Directly

Sometimes the transform matches a standard form. For example:

Example:

s
$240

For F(s) =

s
s2+ w2

Using the pair

<-> Cos(wt)
f(t)=cos(3t)
Step 5: Use Convolution (if necessary)

If the function is a product of two simpler functions, apply the convolution theorem:
t
LHEGGO} = (90 = [ FDg(t-Dde
0

8.5 PARTIAL FRACTION METHOD:

The Partial Fraction Method is a powerful technique for finding the inverse Laplace
transform of rational functions (ratios of polynomials). The method involves decomposing a

complex fraction into simpler fractions whose inverse transforms are known.

Steps for the Partial Fraction Method

Given a Laplace transform:

P(s)
Q(s)

F(s) =
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where P(s) and Q(s) are polynomials, the steps are:
Step 1: Ensure Proper Fraction

Ensure the degree of P(s) is less than the degree of Q(s). If not, perform polynomial long
division first.

Step 2: Factor the Denominator
Factor Q(s) into its irreducible factors. These can be:

1. Distinct Linear Factors: (s—a)

no

Repeated Linear Factors: (s — a)™

w

Irreducible Quadratic Factors: s? + bs + ¢

>

Repeated Quadratics: (s + bs + ¢)*
Step 3: Decompose into Partial Fractions
For each factor type:

1) Distinct Linear Factors:

PGs) A B
(s—a)(s—b)_s—a+s—b

2) Repeated Linear Factors:

P(s) _ A B
(s—a)> s—a (s—a)?

3) Quadratic Factors:

P(s)  Cs+D
s2+bs+c s2+bs+c

Step 4: Solve for Coefficients

Clear the fractions by multiplying both sides by Q(s) and equate coefficients or substitute

convenient values of s.
Step 5: Apply Inverse Laplace Transform

Use standard Laplace pairs for each term.
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8.6 SOLUTION OF ORDINARY DIFFERENTIAL EQUATION BY USING
LAPLACE TRANSFORMATION METHOD:

Solving ordinary differential equations (ODES) using the Laplace transform method is a
systematic approach that converts the ODE from the time domain into the s-domain
(complex frequency domain), solves the algebraic equation, and then applies the inverse
Laplace transform to find the solution in the time domain.

Here’s a step-by-step guide for solving ODEs using Laplace transforms:
Step 1: Apply the Laplace Transform

Recall that the Laplace transform of a function f(t) is:

[ee]

LF@©} = F(s) = j et F(£)dt

0

For derivatives, the transform rules are:

e First derivative:

L{f'(©)} = F(s) - £(0)

e Second derivative:

L{f"(®)} = s?F(s) — sf(0) — £'(0)

And similarly for higher derivatives.
Step 2: Transform the ODE

Convert each term of the ODE using the Laplace transform, incorporating the initial

conditions.

Step 3: Solve the Algebraic Equation

Rearrange to solve for F(s), the Laplace transform of the solution.
Step 4: Apply Inverse Laplace Transform

Use known Laplace pairs or partial fractions to find f(t).
Example Problem

Solve the ODE:
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y'+3y+2y=4,y(0)=1,y'(0)=0
Step 1: Apply Laplace Transform
Apply L to both sides:

L{y"}+3L{y'} + 2L{y} = L{4}
Using the derivative rules:

(21 () — 5y(0) ~ y'(0) + B(s¥ (s) ~ y(0) + 2 (s) = -

Plugging in y(0)=1 and y'(0)=0:

(s2Y(s) — s — (0) + 3(s¥(s) — 1) + 2¥(s) = g

Simplify:

4
(s2+3s+2)Y(s) — (s +3) =3

Rearrange:

s+3 4
(s+1)(s+2)+s(s+1)(s+2)

Y(s) =

Step 2: Partial Fraction Decomposition

s+3
(s+1)(s+2)’

For
Let:

s+3 A N B
(s+1)(s+2) s+1 s+2

Multiply both sides by (s+1)(s+2)
s+3=A(s+2)+B(S+1)

Solving for coefficients:

Lets = -1
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—-1+3=4Q1)+B(0)->2=4

Let s=-2
—-2+3=4(0)+B(-1)»>1=-B->B=-1
So:

s+3 2 N 1
(s+1)(s+2) s+1 s+2

r—— et
s(s+1)(s+2)

4 _¢, D E
s(s+1)(s+2) s s+1 s+2

Solving Coefficients:
o Lets=0:
4=C(1)(2)— 4=2C — C-»C=2
o Lets=I:
4=D(-1)(1) - 4=—D — D=—4
o Lets=—2:
4=E(-2)(~1) — 4=4=2E — E=2
Thus:

4 _2+ 4 N 2
s(s+1)(s+2) s s+1 s+2

Step 3: Combine and Inverse Transform

2 1 2 4 2

Y = + + —
) =r1%532

— +
s s+1 s+2

Simplify:
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v(s) = 2 N 1 2
S_s+1 s+2 s

Inverse Laplace Transform:
2
o L1222
S

L1 2= et

s+1
o 1L = _p-2t
s+2
Final solution:

y()=2—-2et+e72

Laplace transforms offer a straightforward method for solving linear ODEs, especially with
given initial conditions. If you have more questions or need assistance with another example,
feel free to ask!

8.7 SUMMARY:

The inverse Laplace transform is a mathematical operation that reverses the Laplace
transform, converting a function from the s-domain (complex frequency domain) back to the
time domain. If F(s) is the Laplace transform of a time-domain function f(t), the inverse
Laplace transform is denoted as:

F(t) = L7H{f(s)}

8.8 KEY TERMS:

Inverse Laplace Transform-properties, Evaluation of Inverse Laplace Transforms, elementary
function method, Partial fraction method, Solution of ordinary differential equation by using
Laplace transform method.

8.9  SELF ASSESSMENT QUESTIONS:

1) Explain about the properties of Inverse Laplace transforms
2) Explain about the evaluation of Inverse Laplace transforms

3) Briefly explain about the solution of ordinary differential equation by using
Laplace transformation method.
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8.10 SUGGESTED READINGS:

1) *“Laplace Transforms and Their Applications” by Allan Pinkus and Samy
Zafrany

e Focuses on both theoretical aspects and applications.
e Detailed examples and problems to solidify your understanding.
2) “Transforms and Applications Handbook™ by Alexander D. Poularikas

e A detailed guide on various transforms, including Laplace and inverse Laplace
transforms.

Prof. Ch. Linga Raju



LESSON-9
FOURIER SERIES AND FOURIER TRANSFORMS

9.0 AIMAND OBJECTIVE:

The primary aim of this lesson is to understand the concepts of Fourier series,Evaluation of
Fourier coefficients, Fourier Transforms, Infinite Fourier Transforms, and Finite Fourier
Transforms. After completing this chapter, students should be able to employ various
techniques for evaluating residues, including formulas and limit methods; and enhance their
analytical and problem-solving skills through the application of the Calculus of Residues.
STRUCTURE:

9.1 Introduction

9.2  Fourier Series

9.3  Evaluation of Fourier Coefficients

94 Fourier Transforms-Infinite Fourier Transforms

9.5 Finite Fourier Transforms

9.6  Properties

9.7 Problems

9.8  Summary

9.9 Key Terms

9.10 Self Assessments Questions

9.11 Suggested Books

9.1 INTRODUCTION:

Fourier series represent periodic functions as sums of sines and cosines, with coefficients
determined by integrals.Fourier transforms extend this to non-periodic functions,
decomposing them into continuous frequency spectra.Infinite Fourier transforms handle
functions over infinite domains, while finite transforms apply to functions over finite
intervals. Properties like linearity, time-shifting, and frequency-shifting simplify analysis.

9.2 FOURIER SERIES:

Fourier Series is an Infinite Series of a periodic function in terms of Sine and Cosine

functions.
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If f(x) is a periodic function, then we can express it as an infinite sum of sine and cosine
functions as follows:

flx) = % + a, cos(x) + a, cos(2x) + --- + a,, cos(nx) + --- + by sin(x) + b, sin(2x)

+ b3 sin(3x) + --- + b, sin(nx) + -+
fx) = % + Z(an cos(nx) + b, sin(nx))

Here ap, a, and by, are known as Fourier coefficients. The values of these coefficients are what
define the Fourier Series of a function. Constant ao is the average value of the periodic
function while a, and b, are the amplitudes of various sinusoidal functions.

We can calculate ap, a, and b, using the following expressions. For example, if f(x) is a
periodic function, then Fourier Coefficients of its Fourier Series in the interval T < x < T+2xn
are as follows:

1 T+2T
a, = Ej f(x)dx

T
1 T+2T

an = — j f(x)cos (nx)dx

T

b, = %j ’ f(x)sin(nx)dx

T

he equations of ay, a, and b, are known as Euler’s Formulae.

In the previous Fourier Series equation, we used both sine and cosine functions. But we can
further modify the equation to give an equation only in terms of sinusoids.

We have the term ancos(nx) + b,sin(nx) in the equation. We can re-write this as follows:
a, cos(nx) + b, sin(nx) = a, sin(nx + 90 °) + b, sin(nx) = ¢, sin(nx + 6,,)

Wherec,, = /a2 + b2

and 6 = tan™?! (z—")

n

Using these terms, we can derive the sinusoid only Fourier Series Expression of a function as:
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a
flx) = ?" + ¢, sin(x + 0,) + ¢, SiN(2x + 6,) + ¢5 sin(3x + 65) + -+

fF&) = S+ ) (eusin(nx +6,))

In the above equation, notice that for n = 1, the sinusoidal quantity has the same frequency as
the main function (which is ‘X’ in this case) and it is the Fundamental Frequency of the main
waveform. All the subsequent frequencies (for n = 2, n = 3 and so on) are integral multiples
of this fundamental frequency which we call as Harmonic Frequencies.

So, for n = 2, the frequency of the corresponding sinusoid is known as Second Harmonic.
Similarly, for n = 3, it is Third Harmonic etc.

9.3 EVALUATION OF FOURIER COEFFICIENTS:

From the above discussion, it is clear that the Fourier Coefficients ay, a, and b, are the critical
values that we need to calculate for any Fourier Series. We have already seen the expressions
for these constants but let us try to derive them.

For this, let us assume that f(x) is a periodic function and its Fourier Series for the interval [T,
T+2n] i.e., T<x < TH2m is given by:

f@=%+2@mmm+2@wmm
Expression for ap:

In the above equation, let us integrate both sides from x=T to x=T+2n. We get:

T+2m T+2m

T+21 a, [T+2m i
j f(x)dx = ?j dx + Z [an j cos (nx)dx + b, sin (nx)dxl
T n=1

T T T

n

__ag © sin (nx) T+2m —cos (nx) T+2m
=5 (T+2n—T)+ ¥y [an (2), b (52).

= aq,m + Z[an. 0-b,.0]
n=1

=aym
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From the above equation, we can get the expression for a, as:

1 T+2T
a, = Ej f(x)dx

T

Expression for a,

Now, consider the original Fourier Series expression once again. Multiply both sides by

‘cos(mx)’ and integrate the resulting equation from x=T to x=T+2.

j o f(x) cos(mx) dx

T

[ee]

T+2m T+2m
Qo
=3 j cos (mx)dx + Z a, l j cos(nx) cos(mx)dx
T

n=1 T

+ Z b, U ' 7TSin(nx) Cos(mx)dxl

T

In the above expression, if you observe closely, the integrals corresponding to a; and by, (first
and third) are always zero. Coming to the second integral corresponding to a, for all m #n
cases, it becomes zero and the only possible outcome is for value m = n. Therefore,

j”znf(x)cos (nx)dx = %i [an j”znZ. cos?(nx)dx

T T

a, T+2m

== (1 + cos(2nx))dx
2 T

T+2m

&<x N sin (2nx))
2n T

_an
= (2m)

=apm
From the above equation, we can get the expression for a, as:

a, = % j ’ f(x)cos (nx)dx

T
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Expression for by,

Now, consider the original Series expression once again. Multiply both sides by ‘sin(mx)’ and

integrate the resulting equation from x=T to x=T+2x.

j”znf(x) sin(mx) dx

T

[ee]

a T+2m T+2m
= ?Oj sin (mx)dx + Z An U cos(nx) sin(mx)dx
T

n=1 T

[ee]

+ Z b, U”znsin(nx) sin(mx)dxl

T
n=1

In the above expression, the integrals corresponding to ap and a, (first and second) are always

zero. Coming to the third integral corresponding to by, for all m # n cases, it becomes zero

and the only possible outcome is for value m = n. Therefore,

T+2m

j”znf(x)sin(nx)dx = %i lbnj 2. sinz(nx)dxl

b T+21
= _"j (1 — cos(2nx))dx

2 T
B bn< sin (2nx))”2”
2 \F on /g

b

= 7” (2m)
= b,

From the above equation, we can get the expression for b, as:

b, = %j ’ f(x)sin(nx)dx

T

9.4 FOURIER TRANSFORMS - INFINITE FOURIER TRANSFORMS

e Infinite Fourier sine Transform

The infinite Fourier sine transform of a function F(x) of x such that 0 < x <co is denoted by

fs(n), n being a positive integer and is defined as
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fs(n)ZfOOOF(x)Sinnxdx e (D)

Here F(x) is called as the Inverse Fourier sine transform of fy(n) and defined as

F(x) = %jwfs(n)sin(nx)dx
0

Thus if f;(n) = f,[F(x)], then F(x) = £, [f;(n)]

where f is the symbol for Fourier transform and f*for its inverse.
Infinite Fourier Cosine Transform:

The infinite Fourier Cosine transform of a function F(x) of x such that 0 < x <co is defined as
fc(n)ZfOOOF(x)COSnxdx, e (D)

n being a positive integer.

Here the function F(x) is called as the Inverse cosine transform of f.(n) and is defined as

F(x) = %jwfc(n)cos(nx)dx
0

Thus if f.(n) = f.[F(x)], then F(x) = f[f.(n)]

where f is the symbol for Fourier transform and f* for its inverse.
Problems:

1) Find the sine transform of ™.
We have

co —-X o n

— —X o — i _
fs(n)—j0 e ¥ sin(nx)dx = 1+n2( sinnx — x cosnx)

- 2
o 1+n

2) Find the cosine transform of x" e®*,

a
aZ?+n?

We have [,” e~**cos(nx)dx = and £.(n) = [” x™e*cos(nx)dx

Differentiating the first relation n times w.r.t. ‘a’ we find

ij”e‘x cos(nx)dx = (—1)? ﬁ( a )
0 da™ \a? + n?

_Incos {(n + 1) tan?! Z}

(aZ + nZ)(n+1)/2
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by usual method.

Hence

|ncos {(n + 1) tan?! Z}
fe(m) = (@2 + n2) D72

9.5 FINITE FOURIER TRANSFORMS:

Finite Fourier Sine Transform:

Let f(x) denote a function which is sectionally continuous over the range (O, I). Then the
Finite Fourier Sine transform of f(x) on this interval is defined as

F(p) = fi(p) = J, f(x) sin =% dx

where p is an integer (Instead of s, we take p as a parameter)
Inversion Formula for Sine Transform:

If f;(p) = F,(p) is the finite Fourier sine transform of f(x) in (0, I) then the inversion formula

for sine transform is
2 (e}
flx) = TZ P)sm—

Proof: For the given function f(x) in (0, 1), of we find the half range Fourier sine series, we

get,
f(x) = 51 by Sin=> e (D)
where b,, ——f fx )sm””x

by =2 [, f(x)sin®=dx = 2£;(p) by definition

Substituting in (1), we get

2 (o)
F@ =1 fP)sint
p=1
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Finite Fourier Cosine Transform:

Let f(x) denote a sectionally continuous function in (0, I). Then the Finite Fourier cosine

transform of f(x) over (0, 1) is defined as
F(p) =) = [, f(x) cos == dx where p is an integer.

Inversion Formula for Cosine Transform:

If £.(P) is the finite Fourier cosine transform of f(x) in (0, I), then the inversion formula for
cosine transform is

[N

li p)cos—

FG) =1+

where £,(0) = [, f(x)dx.
Proof: If we find half range Fourier cosine series for f(x) in (0O, 1), we obtain,

fO)=2+37 1ancosﬂ i (2)
where a, = > [, f(x) cos ™= dx
a, =2 £(p)
0 =2 [ f(x)dx = 2F(0).
Substituting in (2), we get
=2+ 23 proos”™
=

9.6 PROPERTIES:

9.7 PROBLEMS:

1) Find f(x) if itsfinite Fourier sine transform is ;—Z (P forp=1,2,...... ,0<x<m.
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Sol. By inversion Theorem, we have

flx) = %Z i—f (—1)P1 sin px
p=1

o (-1)pt
:42—35|an
p=1 p

9.8 SUMMARY:

This lesson introduces Fourier analysis, a method for decomposing functions into simpler
frequency components. It covers the Fourier series, which represent periodic functions as
sums of sines and cosines, and Fourier transforms, extending this to non-periodic functions.
We explore calculating Fourier coefficients and properties of infinite and finite Fourier
transforms, including linearity and shifting theorems. These tools enable the analysis of
signals and solutions to differential equations by transforming functions into the frequency
domain, simplifying complex problems through decomposition and manipulation of
frequency components.

9.9 TECHNICAL TERMS:

Fourier series - Evaluation of Fourier coefficients - Fourier Transforms - Infinite
Fourier Transforms - Finite Fourier Transforms

9.10 SELF-ASSESSMENT QUESTIONS:

1) Find the Fourier sine transform of F(x) = x such that 0 < x < 2. (Question from
infinite Fourier transforms.)
2) Find the finite Fourier sine and cosine transforms of

(i) fx) = 1 in (0, )
(i) f(x) = x in (0, I)

(iii) f(x) =1in0< x < %

=-1in % <x<m
9.11 SUGGESTED BOOKS:

1) M.R. Spiegel ‘Complex VARIABLES’, McGraw-Hill Book Co., 1964.

2) E. Kreyszig ‘Advanced Engineering Mathematics’, Wiley Eastern Pvt., Ltd.1971.
3) H. K. Das & Dr. Rama Varma ‘Mathematical Physics’, S. Chand, 2010.

4) B.D. Gupta ‘Mathematical Physics’, Vikas Publishing House, Sahibabad, 1980.

Prof. G. Naga Raju



LESSON-10
COMPLEX VARIABLES

10.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Complex Variables. The
chapter began with understanding of Function of complex number, definition properties,
analytic function, Cauchy-Riemann conditions, Polar form, problems. After completing this
chapter, the student will understand the complete idea about Complex Variables.

STRUCTURE:

10.1 Introduction

10.2 Some Basic Concepts

10.3  Definitions

10.4 Complex Variables

10.5 Functions of Complex Variables
10.6 Cauchy-Riemann Conditions
10.7  Polar form of Cauchy-Riemann Equations
10.8 Summary

10.9 Key Terms

10.10 Self -Assessment Questions

10.11 Reference Books

10.1 INTRODUCTION:

Many scientific problems may be treated and solved by methods of complex analysis. These
problems can be subdivided into two large classes. The first class consists of elementary
problems dealing with electric circuits, vibrating systems, etc., for which the knowledge of
complex numbers gained in college Algebra and calculus is sufficient. The second class of
problems such as the theory of heat, fluid dynamics, etc., requires a detailed knowledge of the
theory of complex analytic functions.

It will be seen that the real and imaginary parts of an analytic function are solutions of
Laplace’s equation in two independent variables. Consequently, two-dimensional problems
can be treated by methods developed in connection with analytic functions. There is,
however, a large area of applications in scientific problems in which familiarity with the
theory of complex functions beyond this minimum is indispensable.
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10.2 SOME BASIC CONCEPTS:

We consider a complex number as having the form a + ib where a and b are real
numbers and i, which is called the imaginary number, has the property that i = — 1. Ifz=a+
ib, then a is called the real part of z and b is called the imaginary part of z and are denoted by
Re (z) and
Im (z) respectively. The symbol z stands for a complex variable. The complex conjugate or
simply conjugate of z is often denoted by Z or z" is given by a — ib. The absolute value or

modulus of a complex number or briefly mod z or |z| is given by |z] = |a + ib| = vVa® +b® =|
Z |. Furtherzz = (\/a2 + b2)2 = |z* which is an important property.

Since a complex number x + iy can be considered as an ordered pair of real numbers
(%, y), we can represent complex numbers by means of the representative points (X, y) in two-
dimensionalxy-plane called Argand plane in which x-axis is taken as real axis and y-axis as
imaginary axis as shown in figure 1.

Imaginary axiél

X.
Real axis

Fig. 10.1: Argand

Further if (r, 0) are the polar coordinates, then x = r cos6 and y = r sin6. So, the complex
number can also be represented as z = X + iy = r cosO + i r sind = r (cosd + i sin6) = re'® by

Euler’s formula.

Consider zy = Xy + iy = 1y (cosO + i sin6) = r.e'*

where r; = | z] = x2+y? and 0; = amp z; = tant YL is called the amplitude of z; or

Xy

argument of z; (arg zy).

Similarly consider z, = x; + iy, = . €%, Then
21 75 = 11 122 @ %% i which
|z1z2|=r112=]21) |22 | and

amp (z1 zz) =amp z; + amp z».
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(i.e.) modulus of a product of complex numbers is equal to product of the moduli of the
individual complex numbers. And amplitude of the product of complex numbers is the sum
of the amplitudes of individual complex numbers.

A number o is called as nth root of a complex number z if we write

o=7""= r””(cose +2K7 L gin OF Zkﬂ) fork=0,1,....... n-1
n n

In particular, if z=1 = 1.6, then

o=1""= cos(Zk—”+ i sin Zk—”)
n n

=1l en ,en ' e are the nth roots of unity.

In w = f(z), if to each value of z, there corresponds only one value to w, then w is called a
single valued function of z.

Example: If w =z, then for a single value z = 4 there corresponds one value to was 4% = 16.

1
So, w = z% is single valued. On the otherhand if w =22, then for a single value of z = 4, there

corresponds two values to was + 2 and -2. Thus, its is a double valued or generally called as

many valued function.

Example: If w = 72, then for a single value z = 4 there corresponds one value to w as 4% =
16.

1
So w = z% is single valued. On the other-hand if w =22, then for a single value of z = 4, there

corresponds two values to was + 2 and —2. Thus, its is a double valued or generally called as

many valued function.

Q: Show that the modulus of the sum of two complex numbers does never exceed the sum of
their moduli.

Solution: Let z; and z, be the two complex numbers and their conjugates are z, and z,
Now |z1+ 7z, F=(z1 +122) (zl+zz) =(z1 +22) (7, +Z,) (vz2=127)

=217, +27, + 217, + 227,
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=+ [z + 2z, 422,

= |z|*+ |z, + 2 Re (12,)

<z + |z,|" + 2| 212, (‘- Re (2) <z))
or £|zl|2+ |zz|2 +2 |z | 9 (1Z,1=12l)

or |zi+2P<(|zi +|2zl)*

(e)lz+zl<(lzl +1zl) e L)
Q: The modulus of difference of two complex numbers is greater than or equal to the
difference of their moduli.

Solution: Let z; and z, be the two complex numbers and their conjugates are z,and z,.
Then

|22, = (21— 22) (Zl_ZZ) =(21-22) (z,-Z,)

= |z + |z,|"-2Re(z1 2,)

>z, + [z, -2 217, ("~ Re (2) < |zjJand —Re(z)>—|z|
2|z, + [z,]"- 2| z1] | zd (12,1 = 2dl)
R AL L2 R — @)

Note: The inequalities (1) and (2) are important in future lessons on complex variables.
In coordinate geometry, the equation of a circle with origin as center and radius r is given by

x> +y* =r’. This can be represented in complex variables as [z|* = r* or simply | | = r. Thus

| z| = 1 represents the equation of a unit circle with origin as centre. Generalizing this
concept,

|z - o = is the equation of circle with r units radius and centre at o. (complex).
Some noteworthy points in understanding the circles are as follows.

|z-a|=r : Allthe points on the circumference of the circle.
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|z-o|<r : Allthe points inside the circle.
|z-ao|<r : Allthe points within and on the circumference of the circle.

|z-a|>r : Allthe points outside the circle.

10.3 DEFINITIONS:
10.3.1 Neighborhood of Point:

It is the set of all points z such that |z — zg| <e where < is an arbitrarily chosen small positive

number. i.e., all points interior to |z — z| = € are called the neighborhood of z,.

10.3.2 Limit:

Let f(z) be defined and single - valued. Let f(z) = u(x,y) + iv(x,y). We say that the number A

is limit of f(z) as z approaches zp and write Lt f(z) = A if for any arbitrary small positive

number <, we can find some positive number & such that [f(z)—-A| <e for all values in |z — zo|
<8.This means that the values of f(z) are as close as desired to A for all z which are

sufficiently close to zo as shown in figure 2.

0
0 X u

Fig 10.2: Limit. Dotted line shows the correspondence between z
approaching z, and f(z) approaching A

Note: The definition of a limit implies that in whatever manner z may approach zo, the limit
must be uniquely A. Since z is a function of x and y (two dimension), z may approach z,
along any radius vector or any curve. Recalling our concept of a limit in one dimension, Lt

X—a

f(x) = k, it means that the limit from the left and the limit from the right should be equal for
the uniqueness of the value k and there are no other paths.
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10.3.3 Continuity:

A single valued function f(z) is continuous at the point zo, if for a given arbitrarily small
positive number <, there exists a number & such that | f(z) —f(zo) | <e for all z satisfying

|z—z0| <6 where & depends on €.This means that f(z) is continuous at zo if ZLE f(z) uniquely
exists in whatever manner z approaches z, and that value is the value of the function at zy. Or

Lt 1(2) = (zo).

10.3.4 Derivatives:

If f(z) is single valued in some region of the z —plane, the derivative of f(z) is defined as

f'(z) = Lt

AZ—0

f(z + Az) -1(2)
Az

provided that the limit exists in whatever manner Az approaches zero. In such case we say
that f(z) is differentiable at z.

10.3.5 Analytic Functions:

A function f(z) which is single valued and differentiable at every point of a region, is
said to be analytic in the region. The terms regular and holomorphic are sometimes used as
synonyms for analytic.

10.3.6 Singular Points:

A point at which f(z) fails to be analytic is called a singular point or singularity of
f(z). We consider various types of singularities that exist at a latter stage.

Note: The practical approach in finding out the singular point is to find out the point where
the given function becomes infinite.

10.4 Complex Variables:

Complex variables are variables that can take on complex numbers as values. A complex
number is a number that can be expressed in the form z = x + iy, where x and y are real
numbers, and i is the imaginary unit, which satisfies i = —1.

Definition of Complex Variables:

A complex variable z is typically expressed in the form:
z=x+1ly

where x and y are real numbers, and i is the imaginary unit,

which satisfies i = —1.
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10.5 FUNCTIONS OF COMPLEX VARIABLES:

There are various types of functions that involve complex variables. Some of the functions
with complex variables are Analytical Functions and Elementary Functions. Some of the
common elementary functions are: Exponential Functions, Trigonometric Functions,
Logarithmic Functions, and Power Functions.

10.5.1 Analytic Functions:

A function f(z) is said to be analytic (or holomorphic) at a point z, if it is differentiable at z,
and in a neighbourhood around zo. If a function is analytic at every point in its domain, it is
called an entire function.

10.5.2 Elementary Functions:

Exponential function for a
complex variable z.

Exponential Function e? = " = e¥(cosy +i siny)

Sine and cosine functions sinz=(e”—e")/2

Trigonometric Functions . i 5
g for a complex variable z. cosz=(e“+e"%)/2

Logarithm of a complex
Logarithmic Function number z = reif (in polar log z=logr +i0
form).

Power of a complex number

- - Zn — (reie)n — r.nein
z raised to an integer n.

Power Functions

10.6 CAUCHY-RIEMANN CONDITIONS:

A necessary condition that w =f(z) = u (x, y) + iv (X, y) be analytic in a region R is that u and
v satisfy the Cauchy-Riemann equation

ou _ ov ou _ oV
an

or ux = vy and uy = - vx

In addition to the existence of the partial derivatives in (4), if they are also continuous, then
the Cauchy — Riemann equations are sufficient conditions for f(z) to be analytic in R.

Solution:

Necessary: If f(z) = u (X, y) + iv (X, y) is to be analytic, the limit

Lt

AZ—0

=f'(2)

f(z + Az) -1(2)
Az
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- Lt [u(x + AX, ¥y + Ay) +iv(X + AX, Y + Ay)] - [u(X, y) + iv(X, y)]
AX—0 AX +1i Ay

Ay—0

must exist in whatever manner Az or (Ax and Ay) tends to zero. Let us consider two simple
approaches

Case 1: In Az = AX + iAy approaching zero let us consider that Ay = 0 which means that Az
= AX (purely real). So Az tending to zero means it approaches zero along the real axis. In
such a case, (5) becomes

Ax—0

f '(Z) = Lt [U(X + AX, y) - U(X’ y) i V(X + AX, y) - V(X1 Y)}
AX AX

= UX +iVX """"" (6)

provided the partial derivative exist.

Case 2: If Ax =0 and Ay—0, then Az = Ay (purely imaginary) tends to zero. So (5) becomes

frg) = Lt |UYFAY)ZUXY) VX Y+AY)=VXY)
i Ay Ay

Ay—0

!

Uytvy=—iy+vw e (7)
i

Now f(z) cannot be analytic unless these two limits as in (6) and (7) must be identical. So the

necessary condition that f(z) be analytic is

Or UX = Vy ,VX: - IUy __________ (8)

Sufficient:

Apart from the existence of the partial derivatives in (8), since ux and uy are supposed

continuous, we have
Au=u(X+Ax, y+Ay)—u(X,Y)
={u(x + Ax, y + Ay) —u (x, y +Ay)} + {u (X, y +Ay) - u (X, y)}

= (ux + €1) AX + (uy + 1) Ay by mean value theorem
y
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= UAX + UyAY + €1AX + 1Ay

where e;and n; tend to zero as Ax—0 and Ay—0

Again, considering that vy and vy are supposed continuous, we get a similar expression for Av
asAv = VyAX +VyAY + €,AX + N2 Ay where €5, n tend to zero as Ax and Ay tend to zero.

Then Aw = Au + IAv
= (Ux + ivk) AX + (Uy +ivy) Ay + eAX + Ay ---mmmmee- (9)
where € = €1 + ie; >0 and n = 11 + in2 >0 as Ax—0 and Ay—0.

If Aw = f(z) satisfies Cauchy — Riemann equations then we have to prove that unique
derivative of f(z) exists.

By Cauchy — Riemann equations, (9) takes the form
AW = (Ux + IVy) AX + (-Vx + iUy) Ay + €AX + nAy
= (Ux + ivy) (AX +IAY) + eAX + Ay
Dividing with Az = Ax + iAy and taking the limit as Az —0, we see that
dw

AW ]
— =f"(2) = Lt — =Ux+ IVy-mmmmmn 10
dz () AZ—0 AZ ( )

so that the derivative exists and unique. That is f(z) is analytic.
10.6.1 Examples

(1) Show that f(z) = Z is nowhere analytic

Solution: If f(z) = Z = x -1y, then

fiz + AzZ) = 7 + Az = (X — iy) + (AX — iAY)

d_z - Lt f(z + Az) -1(2) Lt AX - iAy

AZ—0 AX—0 i
dz - Az pie; AX +iAy

Let Ax and Ay approach along the radius vector
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y = mx. Then

dz _ AX-ImAX _ 1-im

dz &0 AX+imAX ax-014im

1-im

T 14im

This value is not unique since m is an arbitrary constant. So 3— does not exist. Hence it is
z

nowhere analytic.

(2) Prove that the function u + iv = f(z) where
x*(L+i) -y (1-i)

f(z)= x? +y?
0 (z=0)

(z#0)

Is continuous and that the Cauchy — Riemann equation are satisfied at the origin’

Yet f'(0) = does not exist.

x3(1+i)-y*(1-i)

Solution: f(z) = SR
X“+y
3_3 3 3
=2 Y iZ Y fromwhich
X“+y X“+y
3_3 3 3
u=— y2 and v = x2+y2 when z # 0.
X“+y X“+y

Both u and v are rational and finite for all values of z = 0. Hence f(z) is continuous for all z =

0. Now at z =0, both u and v are zero. So, they are continuous at the origin.

We know that

au _ Lt u(x+h,y)-u(x,y)
OX h—0 h

(a_u) _ ¢ Uh,0)-u(0,0)
OX h—0 h

=0
=0

X
y
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=Lt =1 (‘-atz =0, f(0) = 0)

Similarly, it is seen that

(@q el Ll
8y x=0 h—0 h
y=0

0 -
(_V) = Lt E =1
OX

x=0
y=0

Q :Ltﬂ:l
ay i8 h—»0 h

Thus, at the origin ux =vy and uy = —vy (i.e) Cauchy-Riemann equation are satisfied. But the

derivative at the origin is

f(z) - f(0
_ Xs_ys x3+y3

to 2 2 - +i 2 2 P
28 (XTHYT)XFIY)  (XTHYT)(X+iY)

Since both numerator and denominator are homogeneous expressions of the same order, let x

and y approach zero along any radius vector (i.e.) y = mx. Then

1-m® . 1+md
f’'(0) = Lt > — *1 3 -
-0 (L+m°)L+im)  (L+m°)L+im)

which is independent of x. Further, since m is arbitrary, f '(0) is not unique and f(z) is
continuous everywhere.

(3) Show that f(z) = /| xy | is not analytic at the origin although Cauchy-Riemann equations

are satisfied at that point.

Solution: Given that f(z) = /| xy | . Since |xy]| is always a positive quantity, f(z) = /| xy| is

always real. Sou(x,y) = |xy|;Vv(x,y)=0.
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ou - -
Now (—) = Yh0-u00) _ 0-0
x=0 h—0 h h—0
y=0
Similarly,%u, ? and % are zeros. So, Cauchy — Riemann equation are satisfied at the
X

origin.

Now f(0) = Lt f(z)'féo) _ g Y
Z_

Z-0 x=0 X + 1
y—0 y

Since the numerator and denominator are homogeneous expressions of the same order,

consider the radius vector y = mx along which x and y approach zero. Then f(0) = Lt
x—0

xylm[ _ yIm]|

x(1+im)  (1+im)

which gives different values for different values of the arbitrary

constant m. Hence f’(0) is not unique or the derivative does not exist or f(z) is not analytic at
the origin.

(4) Show that w = x* — y* +2 ixy is everywhere analytic in the entire complex plane and
express the derivative of w w.r.t z as a function of z alone.

Solution: Given that w = (x* — y?) +2 ixyin which u = x* —y?* and v = 2 xy

SUx = 2X, Uy = - 2Y; V= 2Y, Vy = 2X

(i.e.) Cauchy-Riemann equations are identically satisfied in the complex plane. More over

the first order partial derivatives are everywhere continuous. So the derivative Z—W should
z

exist according to the sufficient condition for the analytic functions and it is given by

e — (10)
dz

=2x +2iy = 2(x + iy) = 2z.
(5) In any analytic function w = u(x, y) + iv(x, y), if x and y are replaced by their equivalents,

Z+7Z z2-7 . .
X = J; andy = o then w will appear as a function of z alone.
i
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Solution: Although z and Z are clearly dependent, w can be formally considered as a

function two new independent variables z and Z . Then, if w has to appear as a function of z

only, we have to prove that ? is identically zero.
z

oz oz a @
_[QuUOX _oudy| .fovox ovoy
ox 0z oy oz ox 07 oy oz

But from the expression of x and y interms of zand Z,

-1
2

(.~ w=u+ivis given as analytic and so u and v satisfy Cauchy-Riemann equation) (i.e.) w
is a function of z alone.

10.7 POLAR FORM OF CAUCHY - RIEMANN EQUATIONS:

The polar form of the Cauchy — Riemann equations are

u_ 1w
ar rado

and 2 = 2%
or r 08

Proof: In the case of polar form of complex numbers x =r cosf and y = r sind
X +y'=ritan> = 0 = tan™' >

or x
2x0x = 2r0r > — = —
0x
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r COS 6
= cos#f

y rsin 6

r

= sing

I 2
Slmllarly,é =

And from 6 = tan™?! %

a0  —sing
ox

r
- 26 1 (1
Similarly — = —2(—2)
ady 1+i’_2 x
_x _cosé6

x2_|_y2

r

Hence

ou _ du Or

- =+
Ox Or Ox

ou

~ or

cosf —

and

ou _ du or

- =+
dy Or 0dy

du 06
08 0x

ou sin@
00 r

du 06
060 Jdy
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_ou 9+ du cos6
~ or s 08 r
Similarly
v _ dv 9 0v sin@
ox _or %" T a8 r
and
ov _dv 0v cos6

From Cauchy-Riemann equations

u du sinf v . dv cosb

— —_ = = — + —— e 1
o cosf Py o sinf Py (@)
u . du cos6 v dv sinf

— + = = - + = - 2
oy sinf Py o cosf Py 2

Multiplying eq. (1) by cos and eq. (2) by sinf and then adding them gives

ou_ 19w

or _roe T (3)

Multiplying eq. (1) by -sin6 and eq. (2) by cos0 and then adding them gives

u_ 1w

or _ rae T (4)

Equations (3) and (4) are called Polar form of Cauchy-Riemann Equations.

10.8 SUMMARY:

This lesson, starting with an introduction, projects the rudiments of complex numbers and
functions. Then the basic definitions of certain parameters already familiar in real analysis
are given with respect to complex region. Uniqueness of the limit is highlighted which can be
appreciated while dealing with the derivation of Cauchy-Riemann conditions. The equation
of circle and inequalities in the complex plane, play important role in future theorems and
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problems. The definition of an analytic function is given and the necessary and sufficient
conditions for a function to be analytic are derived. The real and imaginary parts of every
analytic function are seen to be harmonic functions (conjugates) satisfying Laplace equation.

Typical and assorted problems have been worked and questions given at the end of the
lesson.

10.9 KEY TERMS:

Argand diagram - mod.z - amp.z - polar form - single valued function - neighborhood - limit -
continuity - differentiability - Analytic functions - Cauchy - Riemann equations.

10.10 SELF-ASSESSMENT QUESTIONS:

1) If f(z) = u + iv is an analytic function where u?+v* is a constant, show that f(z) is a
constant.

2) Show that w = zZ is everywhere continuous and it is nowhere analytic except at
the origin.

3) If z = re® show that the Cauchy-Riemann equations take the form

1 1
U = =Vvgand vV, = —= Ug
r r

4) 1ff(z) and f(z) are both analytic functions show that f(z) is a constant.

5) Determine the analytic function f(z) = u + iv when u + v = x*~ y* + 2xy.
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LESSON-11
CAUCHY’S INTEGRAL THEOREM

11.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Cauchy’s Integral Theorem.
The chapter began with understanding of Cauchy’s integral theorem, Cauchy’s integral
formula, problems. After completing this chapter, the student will understand the complete
idea about Cauchy’s Integral theorem.

STRUCTURE:

11.1  Introduction

11.2  Cauchy’s Integral Theorem

11.3  Cauchy’s Integral Formula

11.4  Converse of Cauchy’s Integral Theorem
11.5 Summary

11.6  Key Terms

11.7  Self -Assessment Questions

11.8 Reference Books

11.1 INTRODUCTION:

Cauchy’s integral formulais a central statement in complex analysis in mathematics. It
expresses that a holomorphic function defined on a disk is determined entirely by its values
on the disk boundary. For all derivatives of a holomorphic function, it provides integration
formulas. Also, this formula is named after Augustin-Louis Cauchy. In this article, you will
learn Cauchy’s Integral theorem and the formula with the help of solved examples.

Before going to the theorem and formula of Cauchy’s integral, let’s understand what a simply

connected region is.
Simply connected Region:

A connected region is called a simply connected region, if all the interior points of a closed

curve C, are illustrated in region D, are also the points of region D.
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11.2 CAUCHY’S INTEGRAL THEOREM:

Statement: If a function f(z) is analytic and its derivative f'(z) is continuous at each point
within and on a closed-curve C then

[cf2)dz=0

Proof: Let the region enclosed by the closed curve C be R. And we know

f(z) =u+iv;z=x+1y; dz =dx + idy
Taking L.H.S. from the statement
[¢ f(z) dz = Jo(u + iv) (dx + idy)
= [((udx + vdy) + il(vdx + udy)

By Green’s theorem, we know that

IoPdx + Qdy = [ln(32 - 57) dxdy

=If@) dz=lln(52 - 5 dxdy + i (55— 50)dxdy e (1)
By Cauchy — Riemann equations,
ou_2ov and Gu 0 2

ax  dy ay  ox
Fromeq. (1) and eq. (2), we get
[ f(z) dz=0+i(0)
=0  (which is R.H.S. in the statement)

Hence [ f(2) dz =0

11.3 CAUCHY’S INTEGRAL FORMULA:

Statement: If a complex function f(z) is analytic within and on a closed contour c inside a
simply-connected domain, and if zo is any point in the middle of C, then

1f f(2)

2mi” € (z — z,)

f(Zo) = dz
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Cauchy’s Integral Theorem

Here, the integral should be taken in the positive sense around c.

Proof: Consider the functlon( /@)

point a zp as the centre draw a small circle C; of radius r lying entirely within C. Now ——=

) is analytic at all points in C except z = z,. Now with the

f(2)

(z-2z0)

is analytic in the region between C and C;, hence by Cauchy’s Integral theorem for multiply

connected regions, we have

[ f(2)

C(Z_Zo)

[ f(2)

€1 (z—2z,)

dz = dz

f(2) - f(z,) + f(zo) .

1 (z—z,)

:fc

=, f(z ;()zo) dz+ f, (Z(Zzoj) iy @)

For any point on C;
fc f(z) f(Zo) dz
v (z-2)

From complex circle equation z — z, = re®®

z=2z,+re"

dz = ire'®do

Jo LG o g Lot 1) I g

= if [f(zo + 1) = f(2,)]d6

When r—0
fC f(Z) f(zo) -0
1 (z-2z,)
dz __ r2m iret®
Now JeGos =0 Tem a0

= i[615"



Centre for Distance Education 11.4 Acharya Nagarjuna University

d
[ =
C1(z—2z,)

Substitute above values in eq. (3)

f(2)
fC (Z - Zo)

dz =0+ f(z,)

1f f(2)

2mi” € (z — z,) dz

o f(z,) =

11.3.1 Generalisation of Cauchy’s Integral Formula:

If f(z) is an analytic function within and on a simple closed curve C and if zy is any point
within c, then

dz

nl f(2)

n =
f"(z) 2mi fc (z — z,)*t
11.4 CONVERSE OF CAUCHY’S INTEGRAL THEOREM:

If a complex function f(z) is continuous throughout the simple connected domain D and if

[¢ f(z) dz = 0 for every closed contour ¢ in D, then f(z) will be an analytic function in D.

This theorem is also known as Morera’s theorem.

2
Example: Evaluate | ﬁ dz, where “c” is the circle such that |z| = 2.

Solution: Comparing |/ _ (Z% dz with[ _f(z)dz, we get;

f(z) = 2%/(z - 5)

This function is not analytic at z = 5.
However, this point lies outside the circle defined by |z| = 2.
Therefore, f(z) is an analytic function at all points inside and on the closed curve c.

Thus, by Cauchy’s theorem, we can write | f(z) dz = 0.

11.5 SUMMARY:

This lesson introduces Cauchy's Integral Theorem, stating that the integral of an analytic
function over a closed contour in a simply connected domain is zero, and Cauchy's Integral
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Formula, which allows us to calculate the value of an analytic function and its derivatives at a
point inside the contour using a contour integral; these theorems are essential for
understanding complex function behavior and evaluating integrals, forming the basis for
advanced complex analysis concepts.

11.6 KEY TERMS:
Cauchy's Integral Theorem- Cauchy's Integral.

11.7 SELF-ASSESSMENT QUESTIONS:

11.8 REFERENCE BOOKS:

1) M.R. Spiegel-‘Complex variables’, McGraw — Hill Book co., 1964.
2) E. Kreyszig-‘Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd., 1971.
3) B.D. Gupta-‘Mathematical Physics’, Vikas publishing House, Sahibabad, 1980.

Prof. G. Naga Raju



LESSON-12
TAYLOR’S AND LAURENT’S EXPANSIONS

12.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Taylor’s and Laurent’s
Expansions. The chapter began with understanding of Taylor’s Series-Laurent’s expansions
and Problems. After completing this chapter, the student will understand the complete idea
about Taylor’s and Laurent’s Expansions.

STRUCTURE:

12.1  Introduction

12.2  Taylor’s Series

12.3 Laurent’s Expansion

12.4  Problems

12.5 Summary

12.6  Key Terms

12.7  Self-Assessment Questions

12.8 Reference Books

121 INTRODUCTION:

Taylor's Theorem provides a way to approximate a function near a specific point using its
derivatives at that point. It expresses the function as a sum of terms involving these
derivatives, multiplied by powers of the difference between the input and the point of
expansion.Laurent's Theorem generalizes Taylor's Theorem to functions that may have
singularities (points where they are not well-behaved). It represents such functions as a series
involving both positive and negative powers.

Taylor’s theorem is extremely useful in numerical analysis, optimization, and physics
for approximating functions and solving differential equations and Laurent’s theorem is
crucial in complex analysis for studying the behavior of functions near singularities,
classifying singularities, and evaluating complex integrals.

122 TAYLOR’S SERIES:

Statement: If a function f(z) is analytic at all points inside and on the circle C with centre a
and radius r then each point z inside C is such that |z-a|<r then
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f(2) :f(a)"'f'(a)(z—a)"'f?(z—a)2+---+7n(z—a)”+...

Proof: Let C be the circle with centre a and r be the radius and take a point z within C and
draw a circle C; with the same centre enclosing the point z.
Let w be the any point on C;. The magnitude of (z-a) is smaller than the magnitude of (w-a).
|z—al <lw—al
|z —al

—<1
lw —al

Now
w—2Z w—a+a—-z

B 1
- w-a)-(z—a)

_ 1
(w—a) [1 — Z_a]

w—a

1 z—aq!
:(W—a)[l_w—a]

L—x)"1=1+x+x?+--when[x<1

1 1 1 z—a+(z—a)2+ +(z—a)”+
w—z w-—a| w—a w-a2 | (w-a"
1 1 , ?-a +(z—a)2 (z—-a)™
w—z w—a Ww-a)2 W-a)3  (Ww=-antt

It is a uniformly convergent series i.e., it is integrable hence multiplying both sides with f(w)

and then integrating with respect to w over C;.

fw)

Gw-—z

dw

J
(O N (O

:fclw—zdw G (w — 2)?

f(w)

+(z - a)zfclm

f(w)

o+ " o
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We know that from Cauchy integral formula for derivatives

i) IW) gy = 21i f(a)

C1 w—z

i [ LY 4w =270 f'(a)

C1 (w—2z)2

i) [ L dw =2 (a)

C1 (w-z)n+1

Now eq. (1) becomes

) ) ) 2mi
2ni f(z) =2mi f(a) + (z—a)2ni f'(a) + -+ (z — a)”Ff”(a) + -
Dividing with 2mi on both sides gives

F@) = £(@) + (2~ )f (@) + -+ (2= @) f(a) + -

[ee]

f(z) = Z a, (z—a)™ where a, = f’;l(!a)

n=0

12.3 LAURENT’S EXPANSION:

Statement: If f(z) is analytic inside and on the boundary of ring shaped region R bounded by
two concentric circles C; and C, of radii r; and r, (r1>r;) respectively and with the centre a

thenforallzinR

[ee]

f(z) = Z a, (z—a)" + ibn (z-b)™
n=0

n=0

1 f(w) _

where a,, = 5 fc v — )i dw wheren =0,1,2, ...
1 f(w) _

where b, = 5 fc v — Q) L dw wheren =123, ..

Proof: Let C; and C; are two circles with centrea of radii r; and r; (r1>r;) in an anti-clockwise
direction. Given that f(z) is analytic on C; and C,. Let y be the closed path containing
ABCDBAEFGA then f(z) is analytic within and on the curve y. Hence by Cauchy Integral

Formula we have
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F2) = — fw) ..

2m Yw—a

where z is any point in the region R.

() = 1 f(W) f(W) 1f f(W) - 1f f(W)
2mi’ CLw — a 2mi ABw—a  2mi Czw—a 2mi BAw—a
f(W) fw)
But meABw a meBAw ad =0
f(W) f(w)
f(z)_2mfc1w a meczw ad """"
1)
Slnce L) |s analytic and in this case w lies on C;
|z—al <|w—al
|z — al
—<1
lw —al
Now 1 = L
w—Z w—a+a—-z
_ 1
- w-a)-(z—a)
_ 1
(w
zZ—a
(w—a)[ ]
L—x)"1=1+x+x?+--whenx<1
1 1 z—a (z—a)? (z—a)”
W—z w-—a w—a (w—a)? (w—a)m
1 1 zZ—a (z — a)? (z—-a)™
w—z w—a W-a)? (Ww-a)3 (w —a)ntt
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hf()

Multiplying both sides wit and then integrate with respect to w over C;

1, fwm

2mi Clw—z

1 f(W) (Z—a)f f(w)

T 2mi Clw—a 2mi Cl(w—a)zdW
(z — a)? f(w) (z—a)" f(w)
+ oo 4 + ...
2mi e, (w—a)3 aw 2mi Ie, (w — a)r*t dw
=aqy+a,z—a)+a,z-a)*+- - 2)
Now consider
f(W)
sz w— a
in this case w lies on circle C, then
lw—al <|z—-al
lw —al
_— < 1
|z — al
Now L = L
w—2Z w—a+a—-z
_ 1
- w-a)-(z—a)
_ 1
—a -1
—(z —a) [ z— a]
1 -1 w—a (Ww-—a)? (w—a)”
= 1+ + ot — ..
w—z zZ—a z—a (z—a)? (z—=a)

1 - 1 + w—a +(W_a)2+...+u+...l
z—a (z-a)? (z-a) (z — a)rt?
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Multiplying both sides with %(Viv)and then integrate with respect to w over C,

1 f (W)

2mi CZW—Z

(z—a) '1 ( - )2

Je fw)dw + ——— Je SfW)(w —a)dw + -
+(Z—a)‘”f f(w)

+ ...
2mi G(w—a)™ dw

=bGz-a) +bz—a) 2+ e (3)
Substitute equations (2) and (3) in equation (1), we get

f(2) =lao+ a;(z — @) + ay(z — a)? + 1+ [by(z = @) + by(z — @)% + -]

[ee]

Lf@ =) -+ i by (z— b)™
n=0

n=0

12.4 PROBLEMS:
1) Find the first four terms of the Taylor series expansion of the complex variable function

_ zZ+1 _ - .
f(z) = s y— about z = 2 find the origin of convergence.

Solution: By Taylor series,

F@ = F@+ (@ —a) + J;_'!'(Z ) f3| —a)y +
Sincez=2
2+1 3
f@O=G3e-a"2
-4 5
&= = "o
fI(Z) — 4 (_5)

—+
(z=-3)* (z-4)?
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YIS
IS

@) =

-8 10
Z—3) " (z—4)

f”(Z) —

f”(z) — z

4
24 (—30)

f”'(Z) = (Z — 3)4 + (Z — 4)4

ful(z) — E

8
z+1

*ﬂ@:@—ag—q

27
4 x

(z—-2)°

11 7
f@ =5+ @2+ 5@ -2) "+ 55513

_13+11 2+27 22+177 )3
f(Z)—E 7(2— ) Z(Z— ) ﬁ(z_ )

125 SUMMARY:

This lesson explores power series representations of complex functions, beginning
with Taylor's Theorem, which expresses an analytic function as a convergent power series in
a neighborhood of a point, effectively generalizing the real-variable Taylor expansion. The
proof highlights the role of Cauchy's integral formula. Laurent's Theorem then extends this
concept to functions with singularities, providing a series representation involving both
positive and negative powers of (z—zp) within an annulus surrounding the singularity. The
derivation emphasizes the importance of contour integration and residue calculus.

12.6 KEY TERMS:

Taylor's Theorem-Laurent's Theorem.

12.7 SELF-ASSESSMENT QUESTIONS:

1) Find the first four terms of Taylor series of expansion of a complex variable

function f(z) = ﬁ about the point z = 4 find the origin of convergence.

(
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2) Expand Laurent’s series f(z) = ( orl<l|z| <2

1
z—1)(z-2) f

12.8 REFERENCE BOOKS:
1) M.R. Spiegel “Complex variables’, McGraw-Hill Book Co., 1964.

2) E. Kreyszig ‘Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd.,
1971.

3) B.D. Gupta ‘Mathematical Physics’, Vikas publishing House, Sahibabad,
1980.

Prof. G. Naga Raju



LESSON-13
CALCULUS OF RESIDUES

13.0 AIM AND OBJECTIVE:

The primary aim of this lesson is to understand the concepts of Calculus of Residues,
Cauchy’s Residue theorem, Evaluation of Residues, Evaluation of contour integrals. After
completing this chapter, students should be able to employ various techniques for evaluating
residues, including formulas and limit methods; and enhance their analytical and problem-
solving skills through the application of the Calculus of Residues.

STRUCTURE:

13.1 Introduction-Calculus of Residues
13.2 Cauchy’s Residue Theorem

13.3 Evaluation of Residues

13.4 Evaluation of Contour Integrals
13.5 Summary

13.6 Key Terms

13.7  Self Assessments Books

13.8  Suggested Books
13.1 INTRODUCTION-CALCULUS OF RESIDUES

The Calculus of Residues is a branch of mathematics that provides us with a profound
understanding of the behavior of complex functions, particularly around their singularities,
and offers a remarkably efficient way to evaluate complex integrals. Applications of these
topics include electromagnetism, quantum mechanics, and fluid dynamics.

13.2 CAUCHY’S RESIDUE THEOREM:

Statement: Let a function f(z) be analytic inside a closed C except at a finite no. of poles
within C then

fcf(z)dz = 2mi (sum of the residues at the poles within C)

Proof: Let f(z) is analytic in a closed curve C except at finite number of poles within C, say
ai, az, .... an I.e., f(z) is analytic within and on thcicle C except at aj, ay, .... a,. Now draw
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small non-interacting circles with centres aj, a,, .... a, respectively and radii is so small that
lie entirely within the closed circle C then f(z) is analytic in the bounded region bounded by
Cand Cy, Cy, Gy, ... Ch.

Applying Cauchy’s theorem,
Jf@dz= [ f(Ddz+ [ f()dz+ [ f(2)dz + -+ [ f(2)dz
= 2mi Res of f(at z = a;) + 2mi Res of f(at z = a,) + -+ 2mi Res of f(at z = a,)
= 2mi [Res of f(a,) + Res of f(a,) + -+ Res of f(ay)
J of(2)dz = 2mi (sum of the residues at the poles within C)

13.2 EVALUATION OF RESIDUE:

1) f(z) has a simple pole at z = a. In this case the Laurent’s expansion of f(z) is

FG) = 50 Calz - )+

a

Therefore,

res f(2z) =d, =1lim(z-a) f(2)

Z=a Z—rda

If f(z) = %, where h(z) has a simple zero at z = a and g(a) # 0, then f(z) has a simple pole

at z = a. In this case,
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=) BO) _ yy =980) _ 50

z—a h(Z) z—a h(z) — h(a) - h’(a)

If f(2)= %Z)) where h(z) has a simple zero at z= a, g(a) #0, then
z

_8(a)
' H(a)

2) f(z) has a pole of order mat z = a.

Denotep(z) = (z — a)™f(z). Then ¢(z) is analytic in some neighbourhood of the point a.

Let, the Taylor series expansion of ¢(z) in this neighbourhood be

(m-1)
o(z) = ¢(a) + ¢'(a)(z —a)+ -+ %(z —a)™ !+ ...

Therefore, the Laurent’s expansion of f(z) in the deleted neighbourhood of a is

1

(z—a)™

(m-1)
f@)= Z2 =Dt ()

(z—a)™ (m-a)! (z—a)

+ non-negative powers of (z-a)

B qD(m—l)(a) B 1 dm-1
Y (m—a)!  (m—a)dzmt

[(z - a)™f(2)],=a

d, = coefficient of —a

13.3 EVALUATION OF CONTOUR INTEGRALS:

Type 1: Integrals of the form fozn F(cos@,sin8)d6o

If we take z = eie, then cos0 =cos 8 = 1(z + 1) ,Sinf = i(z - 1) and d@ = ‘?—
2 z 21 z

Z
iz’
Substituting for sinf, cosd and dO the definite integral transforms into the following contour

integral

jnF(cose,sinH)dHZ flzl:lf(z)dz
0

where f(z) = liZ[F (%(Z +§) zil(z - i))]
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Apply Residue theorem to evaluate
f|Z|=1f(Z)dZ

13.4 PROBLEM:

1) Consider

27T 1
jo 1+ 3(cost)? dt.

mn 1 dz
j 1 + 3(cost)? dt = f|Z|=1 1 n)? iz
’ 1+3(3(z+1))

= —4if|Z|=1 374 + 12022 +3 dz
= —4if, : : )
|z|=1 3(z + V3i)(z — V3i) (Z * ﬁ) (Z B ﬁ)
) _f f z dz
= 31 |z]=1 3(Z+\/'§i)(z—\/§i) (Z+%) (Z_%)

_%i x 2mi {Res (ﬂ%) + Res (f’ _%)}

2) f(z) = cot z. (Problem related to Evaluation of residues)

The function f(z) =cotz = :% has simple poles at the points z = nt & cos nn# 0.
Therefore,

res f(z) = cosnrT _q,

z=nm cosnwt

(Note the difficulty in finding Laurent’s expansion of cot z in deleted neighbourhood of the

points n.
13.5 SUMMARY:

This lesson introduces the Calculus of Residues, a powerful tool for evaluating
complex integrals. It begins with the concept of residues, quantifying the behavior of
functions near isolated singularities, and demonstrates methods for their evaluation. The
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Cauchy Residue Theorem then connects these residues to contour integrals, stating that the
enclosed residues determine the integral of a meromorphic function around a closed curve.
This theorem enables the efficient evaluation of contour integrals, which often simplifies to
calculating residues, especially for real integrals transformed into the complex plane. The
lesson emphasizes the application of residue calculus to solve integrals that are otherwise
difficult or impossible to evaluate using traditional real calculus methods.

13.6 TECHNICAL TERMS:

Calculus of Residues-Cauchy’s Residue Theorem-Evaluation of Residues-Evaluation
of Contour Integrals

13.7 SELF-ASSESSMENT QUESTIONS:

o) 1

1) Evaluate real integral |

© x2+4x+5

1

2) Evaluate real integral [ L= d.

13.8° SUGGESTED BOOKS:
1) M.R. Spiegel *Complex variables’, McGraw-Hill Book co., 1964.
2) E. Kreyszig ‘Advanced Engineering Mathematics’, Wiley Eastern Pvt., Ltd., 1971.

3) B.D. Gupta ‘Mathematical Physics’, Vikas Publishing House, Sahibabad, 1980.

Prof. M. Rami Reddy



LESSON-14
TENSOR ANALYSIS

14.0 AIM AND OBJECTIVE:

The aim of this lesson is to equip students with a foundational understanding of tensor
classification by distinguishing between contravariant, covariant, and mixed tensors based on
their transformation properties under coordinate changes, enabling them to correctly identify
and manipulate these tensors in subsequent tensor analysis applications and physical contexts.

STRUCTURE:

14.1  Introduction

14.2  Contravariant Tensors
14.3  Covariant Tensors

14.4  Mixed Tensor

145 Problems

14.6  Summary

14.7 Key Terms

14.8  Self-Assessments Questions

14.9  Suggested Books
14.1 INTRODUCTION OF TENSOR:
Scalars are specified by magnitude only, Vectors have magnitude as well as direction.

But Tensors are associated with magnitude and two or more directions.

Tensor Analysis is suitable for Mathematical formulation of Natural Laws in forms
which are invariant with respect to different frames of reference. That is why Einstein used
Tensors for the formulation of his Theory of Relativity.

A scalar is a zero-order tensor. A vector is a first-order tensor. A matrix is a second order

tensor. For example, consider the stress tensorr.
Txx  Txy Txz
T=Tyx Tyy Tyz
Tax Tzy Tyz

Another way to write a vector is in Cartesian form:
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X=XI+Xj+ Xk=(09.2) oo (D)

The coordinates X, y and z can also be written as x1, x2, x3. Thus the vector can be written as

X = (X1, X0, X3) ceeeeeeee et (2)
Oras
X=(X) i =123 i (3)

or in index notation, simply as

X = X e (D
Where i is understood to be a dummy variable running from 1 to 3.

Thus xi, xj and xp all refer to the same vector (xi, X2 and X3), as the index (subscript) always

runs from 1 to 3.

142 CONTRAVARIANT TENSORS:

A contravariant tensor is a tensor having specific transformation properties (cf., a covariant
tensor). To examine the transformation properties of a contravariant tensor, first consider
a tensor of rank 1 (a vector).

Dr = dxiX1 + dxoX, + dXaX3 (5)
for which

,_axd
dx; = dxjdx] TR ()]

Now let A; = dx;, then any set of quantities  which transform according to

!

Ai: dxjAj (7)
or, defining
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according to

2

is a contravariant tensor. Contravariant tensors are indicated with raised indices, i.e., a¥.

Contravariant Tensors of Second Rank:

Let us consider (n)? quantities A" (here i and j take the values from 1 to n independently) in a
system of variables x' and let these quantities have values A'w in another system of variables

Xn,
If these quantities obey the transformation equations

Al = (9xlu [xi) (9x"v 19x)) A A (=)'

then the quantities A” are said to be the components of a contravariant tensor of second rank.

143 COVARIANT TENSORS:

Covariant tensors are a type of tensor with differing transformation properties, denoted a,,.

However, in three-dimensional Euclidean space,

ox; dx!
6_9;1_ = agj . ¢ 10)

for i, j =1, 2, 3, meaning that contravariant and covariant tensors are equivalent. Such tensors
are known as Cartesian tensor. The two types of tensors do differ in higher dimensions,
however.

Contravariant four-vectors satisfy
a* = Aa? e (10)
where A is a Lorentz tensor.

To turn a covariant tensor a,, into a contravariant tensor a* (index raising), use the metric

tensor g#v to write
g¥ra,=a* ................(12)

Covariant and contravariant indices can be used simultaneously in a mixed tensor.
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144 MIXED TENSOR:

A tensor having contravariant and covariant indices. Intensor analysis, a mixed tensor is
a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices
of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a
superscript (contravariant).

A mixed tensor of type or valence (%I) also written "type (M, N)", with bothM > 0

and N> 0, is a tensor which has M contravariant indices and N covariant indices. Such a
tensor can be defined as alinear function which maps an (M + N) tuple of M one-
forms and N vectors to a scalar.

Covariant Tensors of Second Rank:

Let us consider (n)? quantities A" (here i and j take the values from 1 to n independently) in a
system of variables x' and let these quantities have valuesA',, in another system of variables

Xn,
If these quantities obey the transformation equations
Al = (0x'10X'1) (03 10x) Aij oo (B)

then the quantities A are said to be the components of a covariant tensor of second rank.
145 PROBLEMS:
1. Show that the law of transformation for a contravariant vector is transitive.
We have A'* = aﬂA"‘
0xq

ny — ax;’t, a

Let A" =—%A
Oxig
axu axu ax’ axu

ot =21 B — P T8 pa — T pa
- A axf,;A oxrg aqu aqu

which shows that contravariant law is transitive.
146 SUMMARY

This lesson, Tensor Analysis focuses on classifying tensors based on their
transformation properties under coordinate changes. Contravariant tensors, denoted with
upper indices, transform "against™ the coordinate change, while covariant tensors, denoted
with lower indices, transform "with™ the coordinate change. Mixed tensors, possessing both
upper and lower indices, exhibit a combination of these transformations. Understanding these
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distinctions is crucial for expressing physical laws and geometric relationships in a

coordinate-independent manner, allowing for consistent descriptions across different
reference frames.

14,7 TECHNICAL TERMS:

14.8

Tensors-Contravariant Tensors-Covariant Tensors-Mixed Tensors.

SELF-ASSESSMENT QUESTIONS:

1)

2)

A contravariant vector Ai in a 3-dimensional Cartesian coordinate system (x, X%,
x%) has components: A’ = x* + 2x%, A? = x*, A® = (x')? — x*. The coordinate
system is transformed to a new system (x!, x2,x3) according to the following
transformation: x! = x! —x2 + x3, ¥? = 2x? — x3, x3 = x! + x3. Determine
the components of the transformed contravariant vector A* in the new coordinate
system. Express your answer in terms of the original coordinates (x!, x%, ).

A mixed tensor Tj" in a 2-dimensional coordinate system (x!,x?) has the following
components: T§ = x'x?, T} = (x2)?, T?2 = —x*, T? = x* + x2. The coordinate
system is transformed to a new system (x!, x¥2) according to the following
transformation: x! = 2x* + x2?, ¥2 = x* — x2, Calculate the components of the
transformed mixed tensor T’j" in the new coordinate system. Express your answer

in terms of the new coordinates (X!, x?2).

14.9 SUGGESTED BOOKS:

1)
2)
3)

M.R. Spiegel ‘Complex variables’, McGraw-Hill Book co., 1964.
E. Kreyszig *Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd., 1971.

B.D. Gupta ‘Mathematical Physics’, Vikas Publishing House, Sahibabad, 1980.

Prof. M. Rami Reddy



LESSON-15
TENSOR ANALYSIS-II

15.0 AIM AND OBJECTIVE:

The aim of this lesson is to establish a clear understanding of tensor classification by
exploring the concept of tensor rank, the distinction between symmetric and anti-symmetric
tensors, and the importance of invariant tensors, enabling students to analyze and solve
problems involving tensors while enhancing their analytical skills in various scientific and
mathematical contexts.

STRUCTURE:

15.1 Introduction

15.2 Rank of a Tensor

15.3 Symmetric and Anti-Symmetric Tensors
15.4 Invariant Tensors

15,5 Summary

15.6 Key Terms

15.7  Self Assessments Questions

15.8 Suggested Books
15.1 INTRODUCTION:

This lesson introduces fundamental concepts related to the structure and properties of tensors,
crucial for advanced applications in physics and mathematics. We begin by defining the rank
of a tensor, which signifies the number of indices and dictates its transformation behavior.
We then explore two special classes of tensors: symmetric tensors, which remain unchanged
under the permutation of their indices, and anti-symmetric (or skew-symmetric) tensors,
which change sign upon index permutation. Finally, we discuss invariant tensors, tensors
whose components remain the same across all coordinate transformations, highlighting their
importance in expressing fundamental physical laws and geometric properties in a
coordinate-independent manner. This lesson builds a foundational understanding of tensor
classification and properties, essential for further study in fields like general relativity,
continuum mechanics, and differential geometry.
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15.2 RANK OF TENSOR:

Total number of contravariant and covariant indices of atensor. The rank R of atensor is
independent of the number of dimensions N of the underlying space. An intuitive way to
think of the rank of a tensor is as follows: First, consider intuitively that a tensor represents a
physical entity which may be characterized by magnitude and multiple directions
simultaneously. Therefore, the number of simultaneous directions is denoted R and is called
the rank of the tensor in question. In N-dimensional space, it follows that a rank-0 tensor (i.e.,
ascalar) can be represented by N° = 1 number since scalars represent quantities with
magnitude and no direction; similarly, a rank-1 tensor (i.e., a vector) in N-dimensional space
can be represented by N' = N numbers and a general tensor by N¥ numbers. From this
perspective, a rank-2 tensor (one that requires N? numbers to describe) is equivalent,
mathematically, to an N X N matrix.

Rank Object

0 scalar

1 vector

2 N X N matrix

>3 | tensor

The above table gives the most common nomenclature associated to tensors of various rank.
Some care must be exhibited, however, because the above nomenclature is hardly uniform
across the literature. For example, some authors refer to tensors of rank 2 as dyads, a term
used completely independently of the related term dyadic used to describe vector direct
products. Following such convention, authors also use the terms triad, tetrad, etc., to refer to
tensors of rank 3, rank 4, etc.

152 SYMMETRIC AND ANTI-SYMMETRIC TENSORS:

15.2.1 (a) Symmetric Tensors:

If two contravariant or covariant indices can be interchanged without altering the tensor, then
the tensor is said to be symmetric with respect to these two indices.

Forexample if AV = AVior Ay= Aji e (13)
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then the contravariant tensor of second rank A" or covariant tensor A is said to be symmetric
For a tensor Aji* of higher rank

If Ajik= Ajik

Then the tensor A;k is said to be symmetric with respect to indices i and j.

15.2.1.1 Theorem 1:

The symmetry property of a tensor in independent of co-ordinate system used.

If tensor A,k is symmetric with respect to first indices i and j, we have

Ajik= Ak e (19)
Now Alywe = (9x'v [ axi)( ax'v | dxi)( dx's | dx¥)( dxl | x'r) Ak
= (@x'n | 9x1)( dx'v | dx)( Dx'e | DxK)( Dxl | Dx'P) Ak
using eq (14), Again interchanging the dummy indices i and j, we get
Ao = (9x'e [ ax)(9x'v 1 x")(9x'e [ dxK)( Ox! | Dx'v) Asiik

= (@x'n | 9x1)( 9x'v | dxI)( Dx'7 | Dxk)( Dx! [ Dx'P) Ak

= Alpv,ua

I.e. given tensor is gain symmetric with respect to first two indices in new co-ordinate system.
Thus the symmetry property of a tensor is independent of coordinate system.

15.2.1.2 Theorem 2:

Symmetry is not preserved with respect to two indices, one contravariant and the other

covariant.

Let A be symmetric with respect to two indices, one contravariant i and the other

covariant |, then we have
Agik= Ak e (15)
Ao = (9x'k | 9x")( 9x'v 1 3x)( 9x'e | dxK)( dx! | dx'P) Asisk

= (0x'n 1 3x")( 9x"v 1 9x))(9x'e [ dx¥)( Oxl | Dx'P) Alik
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Using eq. (15), Again interchanging the dummy indices i and |, we get
Ao = (9x'e | 9x")( dx'v 1 9x)(9xe 1 dxk)( dx' | dx'r) Ak

Al oo = (9x [ 9x")(9x"v | dxY)( 0x'o 1 dxK)( dxt ] dx'w) Ak

Thus, AlpwozA! o

15.2.2. Antisymmetric Tensors or Skew-Symmetric Tensors.

A tensor, whose each component alters in sign but not in magnitude when two contravariant
or covariant indices are interchanged, is said to be skew symmetric or anti-symmetric with

respect to these two indices.

For example if A¥ = —A (or) Aj = —Aji PP ¢ 1))

Then contravariant tensor A or covariant tensor A;; of second rank is anti-symmetric or for a

tensor of higher rank A;Jk
If Ajik= -AiM then tensor Ak is antisymmetric with respect to indices j and k.

The skew-symmetry property of a tensor is also independent of the choice of coordinate
system. So if a tensor is skew symmetric with respect to two indices in any coordinate
system, it remains skew-symmetric with respect to these two indices in any other coordinate

system.

If all the indices of a contravariant or covariant tensor can be interchanged so that its

components

change sign at each interchange of a pair of indices, the tensor is said to be anti-symmetric,
i.e., Alk=_ Alk = 4 Al

Thus we may state that a contravariant or covariant tensor is anti-symmetric if its components

change sign under an odd permutation of its indices and do not change sign under an even

permutation of its indices.

15.3 INVARIANT TENSORS:

Invariants of a tensor are scalar functions of the tensor components which remain constant

under a basis change. That is to say, the invariant has the same value when computed in two
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arbitrary bases {ej,ez,es} and {m;,m;,ms}. A symmetric second order tensor always has three

independent invariants.
(OR)

Invariant tensors are tensors that remain unchanged under a specific group of
transformations. These transformations could be rotations, Lorentz transformations, or other

symmetry operations depending on the physical or mathematical context.
Definition: A tensor T"" is said to be invariant under a transformation A if it satisfies:

T’pv... — App on"' TPO-= THV-

for all transformations in a given symmetry group.
Examples of Invariant Tensors:

o Kronecker Delta (6""): The identity tensor in any metric space, which remains
nchanged under any orthogonal transformation.

« Levi-Civita Symbol (¢""): An antisymmetric tensor that remains invariant up to a

sign under proper transformations (like special orthogonal groups).
e Metric Tensor (gu): Invariant under coordinate transformations that preserve the

metricstructure (e.g., Lorentz transformations in relativity).

155 SUMMARY:

This lesson categorizes tensors by their rank (number of indices), explores the special
properties of symmetric and anti-symmetric tensors based on index permutation behavior,
and highlights the significance of invariant tensors, which remain unchanged under
coordinate transformations, providing a foundation for understanding tensor properties and
their applications across diverse fields.

15.6 TECHNICAL TERMS:
Rank of a tensor - Symmetric and anti-symmetric tensors - Invariant tensors
15.7 SELF-ASSESSMENT QUESTIONS:

1) Define the rank of a tensor and provide examples of tensors with ranks 0, 1, and 2.

2) Explain the difference between symmetric and anti-symmetric tensors, and give a
mathematical expression for each.
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15.8

SUGGESTED BOOKS:

1) M.R. Spiegel “‘Complex variables’, McGraw-Hill Book co., 1964.

2) E. Kreyszig ‘Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd.,
1971.

3) B.D. Gupta ‘Mathematical Physics’, Vikas Publishing House, Sahibabad,
1980.

Prof. M. Rami Reddy



LESSON-16
TENSOR ANALYSIS-I1I

16.0 AIM AND OBJECTIVE:

The aim of this lesson is to provide students with the operational tools necessary to
manipulate tensors, specifically through addition, multiplication (outer and inner products),
contraction, and the quotient law, enabling them to combine and analyze tensor quantities
effectively and to determine tensor character from relationships between quantities.

STRUCTURE:

16.1 Introduction

16.2 Addition and Multiplication of Tensors
16.3 Outer and Inner Products

16.4 Contraction of Tensors

16.5 Quotient Law

16.6 Summary

16.7 Key Terms

16.8  Self Assessment Questions

16.9 Suggested Books
16.1 INTRODUCTION:

This lesson introduces the fundamental algebraic operations applied to tensors,
enabling their manipulation and combination. We will explore tensor addition, which requires
tensors of the same type, and multiplication, encompassing both outer products, which
increase tensor rank, and inner products, which reduce it. The concepts of contraction, a
process that reduces tensor rank by summing over repeated indices, and the quotient law,
which helps determine if a quantity is a tensor based on its interaction with known tensors,
are also covered, providing essential tools for tensor calculus and its applications in various
scientific fields.

16.2 ADDITION AND MULTIPLICATION OF TENSORS :

In tensor algebra, addition and multiplication operate similarly to matrices but with more
dimensions. Let's break them down:
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1. Addition of Tensors:
e Rule: Two tensors can be added if they have the same shape.
o Element-wise Operation: Addition happens component-wise.

Let’s take two rank-2 tensors (matrices):

1 2 _ 5 6
A‘s 4’ A‘? 8
Addition:
A+B_1+5 2+6_ 6 8

T 347 4+8 10 12

For higher-rank tensors, the same rule applies: element-wise addition as long as the shapes
match.

2. Multiplication of Tensors:
There are multiple ways to multiply tensors, depending on the context:
(a) Element-wise (Hadamard) Multiplication

e Rule: Tensors must have the same shape.

e Operation: Multiply corresponding elements.

Examples:

(b) Tensor (Outer) Product

e Rule: No shape restriction.

o Operation: Each element of the first tensor multiplies the entire second tensor.
Example:

If Alisa 1D tensor (vector) and B is also a 1D tensor:
A=[1,2],B=[3,4]

The outer product:

13 14 _3 4
A®B‘2-3 24 6 8
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Outer and Inner Products:
Both outer and inner products are fundamental tensor operations used in linear algebra and
machine learning. Let's break them down with definitions and examples.

16.3 OUTER AND INNER PRODUCT:

1. Outer Product:
The outer product of two tensors creates a higher-dimensional tensor. It is defined as:

(A®B)iyj = AiBj

Key Properties:

e Dimension increases: If AAA is of shape (m,)(m,)(m,) and BBB is of shape
(n,)(n,)(n,), the result is a tensor of shape (m,n)(m, n)(m,n).

e No summation occurs: Every element of AAA multiplies every element of BBB
independently.

Example (Vectors):

1
A=|2 ,B:[g]
3
1X4 1X5 4 5
ARB=|2x4 2x5|=|8 10
3x4 3x51 l12 15

For higher-order tensors, the same rule applies: each element of AAA multiplies every
element of BBB, creating a larger-dimensional tensor.

2. Inner Product:

In tensor analysis, the inner product is a fundamental operation that combines two tensors to
form a scalar.

Give two tensors A and B, the inner product is denoted by

AB

The inner product is a scalar value that results from contracting the two tensors along a
shared index.

The inner product of two tensors A and B can be mathematically defined as

AB=A:B i
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Where
Ari is the contravariant component of tensor A
B_ is the covariant component of tensor B

The summation convention is implied, meaning that the index i is summed over.
16.4 CONTRACTION OF TENSORS:

Given a tensor T, the contraction over the indices p and v would be written as:
—_pH
T=T} = X, T"
This operation involves summing the components of the tensor over the repeated index,

leading to a scalar quantity (if it is fully contracted).

In a more general setting, contraction can also refer to the summation of indices in a product
of tensors. For example, in the contraction of a product of two tensors A*” and B, one sums

over the indices p and v:

C=A"B,,=2,,A"B,,

This results in a scalar quantity if both indices are contracted.
16.5 QUOTIENT LAW:

In tensor analysis, the quotient law describes the way tensor operations behave when applied
to a quotient of two tensors. It can be used in the context of covariant and contravariant
tensors or the division of tensors by scalar quantities.

If T is a tensor and s is a scalar, then the quotient rule expresses the behavior of the tensor T
divided by the scalar s:

T . . TRV TV
— implies — =—
S N N

This is essentially the operation of dividing each component of the tensor by the scalar. For
more complicated expressions involving tensor products, the quotient rule can extend to

ensure the correct handling of indices.
Practical Example (in General Relativity):

Consider the metric tensorg,,, and its inverseg"” where:

Jwg =67
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In this case, contraction can be used to sum over indices in equations like the Ricci tensor R,
or to contract components of the Einstein field equations in general relativity.

16.6

SUMMARY:

This lesson covers the essential algebraic operations for tensors: addition (requiring

like tensors), outer multiplication (increasing rank), inner multiplication (reducing rank),
contraction (summing over indices to lower rank), and the quotient law (determining tensor
nature from interactions), providing the tools to combine, manipulate, and analyze tensors
effectively in various scientific applications.

16.7

16.8

TECHNICAL TERMS:

Addition and multiplication of tensors - Outer and inner products - Contraction of
tensors - quotient law.

SELF-ASSESSMENT QUESTIONS

1) Given a contravariant tensor A' and a covariant tensor By in a 3-dimensional

- 1 0 2 k
coordinate system, where: AY = (—1 3 1 )and B, = (k2>
0 2 -2 —k
a) Calculate the outer product C'* = AB,.
b) Calculate the contraction of the tensor D}' = AY B, with respect to the
indices i and j.

2) In a 2-dimensional coordinate system, let Tj; be a known covariant tensor. It is
given that for any arbitrary contravariant vector \/, the quantity Wi:TijVj is a
covariant vector.

a) State the quotient law and explain its significance in determining tensor
character.

b) Using the given information and the quotient law, prove that Tj; is indeed a
covariant tensor.

16.9 SUGGESTED BOOKS:

1) M.R. Spiegel “Complex variables’, McGraw-Hill Book Co., 1964.
2) E. Kreyszig ‘Advanced Engineering Mathematics’, Wiley Eastern Pvt., Ltd., 1971.
3) B.D. Gupta ‘Mathematical Physics’, Vikas Publishing House, Sahibabad, 1980.
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